
Dita: Scaling Diffusion Transformer
for Generalist Vision-Language-Action Policy

Supplementary Material

A. Model and Training Scheme
The architecture of our model is illustrated in Figure 3. The
language instruction is encoded using a pretrained CLIP
model, with its encoder frozen during training. Input im-
ages are resized to 224→ 224 and processed by a pretrained
DINOv2 model, with all parameters being finetuned. A
Q-Former, trained from scratch with a depth of 4, is em-
ployed to reduce the dimensionality of the image features
to a length of 32; within each block, text tokens are injected
as FiLM conditions to augment the image features with lin-
guistic information. The action is perturbed with noise via
a DDPM scheduler with 100 timesteps, and a timestamp in-
dex is embedded using a sinusoidal positional embedding
module. These multimodal inputs are then fed into a causal
Transformer, which predicts the added noise. The Trans-
former adopts a LLaMA2-style architecture, trained from
scratch, comprising 12 self-attention blocks with a hidden
size of 768. All components are trained except for the CLIP
text encoder. In total, the model comprises 334M param-
eters, with 221M being trainable. Achieving this level of
performance with such a compact model represents a pio-
neering advancement in the field, underscoring the efficacy
of the architectural design.

B. Simulation Benchmarks
B.1. SimplerEnv
Results. As described in Figure 7, leveraging the in-context
conditioning design, Dita exhibits enhanced robustness, re-
lying solely on third-person view images to detect subtle
nuances and generate more reliable actions.

B.2. LIBERO
LIBERO comprises four subtasks: LIBERO-SPATIAL,
LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-100,
each designed to evaluate different model capabilities.
LIBERO-SPATIAL assesses spatial relationship under-
standing, containing data with identical object sets but vary-
ing layouts. LIBERO-OBJECT evaluates object transfer-
ability, featuring data with consistent layouts but different
object sets. LIBERO-GOAL examines task comprehen-
sion and transferability, maintaining the same object sets
and layouts while varying tasks. LIBERO-100 is further
divided into LIBERO-90 and LIBERO-10 (also referred to
as LIBERO-LONG), designated for policy pretraining and
long-horizon task evaluation, respectively. LIBERO-100
encompasses a diverse range of objects, layouts, and back-

Figure 7. Qualitative results of Dita under variances in Google
Robot.

grounds, providing a comprehensive benchmark for gener-
alization in robot learning.
Optimization. We optimize the network using AdamW for
100,000 steps on LIBERO. The learning rate is set to 1e↑4
for LIBERO-SPATIAL, LIBERO-OBJECT, and LIBERO-
GOAL, and 5e ↑ 4 for LIBERO-LONG. Across all sub-
datasets, a half-cycle cosine scheduler is applied to decay
the learning rate. Denoising timestamps are set to 100 dur-
ing finetuning, and training is conducted with a batch size
of 512 across 8 NVIDIA A100 GPUs.
Results. Table 6 shows that Dita achieves a success rate
of 77.93% on the most challenging task in LIBERO, i.e.,
SPATIAL-LONG. We argue that the Droid dataset [31]
serves as a more suitable pretraining dataset for LIBERO,
as our model (334M) lacks the capacity to fully accommo-
date the entire OXE dataset. We anticipate that performance
on the OXE-pretrained model can be significantly improved
by scaling up the model size.

B.3. CALVIN
Setup. We directly apply the proposed method to CALVIN
using a single static RGB camera to predict the end-effector
action, which includes three dimensions for translation,

Figure 8. Qualitative results of Dita on LIBERO benchmark.

Table 6. Comparison with Diffusion Policy [17], Octo [72], and
OpenVLA [32] on LIBERO [40]. Dita (OXE) denotes the use of a
pretrained model on OXE, while Dita (Droid) refers to the use of
a pretrained model on Droid.

Method LIBERO-LONG
Diffusion Policy* [17] 50.5%
Octo [72] 51.1%
OpenVLA [32] 53.7%
Dita (pretrained on OXE) 63.8%
Dita (pretrained on Droid) 77.9%

three dimensions for Euler angle rotation, and one dimen-
sion for gripper position (open or close). We evaluate Dita
and EDiff

S
on CALVIN, leveraging the pretrained model on

the OXE dataset to initialize the model for CALVIN.
Optimization. For each training iteration, the model pre-
dicts 10 future action chunks supervised by MSE loss. An
AdamW optimizer is used together with a decayed learn-
ing rate with half-cycle cosine scheduler after several steps
of warming up. The learning rate is initialized as 1e ↑ 4.
Model is trained for 15 epochs with batch size of 128 across
4 NVIDIA A100 GPUs.

B.4. Maniskill2
ManiSkill2 [22], the next generation of the SAPIEN Man-
iSkill benchmark [48], serves as a widely recognized plat-

Lift the pink block from the sliding cabinet

Pull the handle to open the drawer

Push the sliding door to the left side

Stack the grasped block

Figure 9. Qualitative results of Dita on CALVIN ABC→D bench-
mark.

form for assessing the generalized manipulation capabilities
of embodied models. It encompasses 20 distinct manipula-
tion task families and over 4M demonstration frames across
various configurations. Leveraging ManiSkill2, we estab-
lish a novel camera view generalization benchmark to eval-
uate the effectivenes of Dita.

O
ur

s
Ba

se
lin

e
O

ur
s

Ba
se

lin
e

Pick up the apple and move it to the green point

Pick up the cup and move it to the green point

Figure 10. Qualitative comparison between Dita (top) and Diffu-
sion Action Head baseline EDiff

ω→s (bottom) on ManiSkill2 (Pick-
ClutterYCB).

Setup. To construct the benchmark, we select
5 tasks (PickCube-v0, StackCube-v0, PickSingleYCB-
v0,PickClutterYCB-v0, PickSingleEGAD-v0) from Man-
iSkill2 and create a camera pool comprising 300K random
cameras. 20 cameras are sampled each time to render each
trajectory, resulting in over 40K trajectories, which are uti-
lized to train Dita from scratch. The generated dataset is
divided into training and validation sets with a 19:1 ratio,
ensuring that each category in task family, and trajectories
rendered from different camera views are assigned to both,
thereby preventing data leakage. During training, the num-
ber of data samples is balanced across task families by du-
plicating trajectories for task families with fewer samples.
To construct a closed-loop evaluation dataset, we randomly
sample 100 trajectories from the validation set for each task
family. This evaluation dataset with 500 trajectories is used
to assess the success rate for each task family and demon-
strate the camera-view generalization capabilities of Dita.
Optimization. The network is optimized using AdamW
for 50,000 steps on ManiSkill2, with a learning rate set to
1e ↑ 4. The number of denoising timestamps is set to 100,
and the batch size is 1024 distributed across 16 NVIDIA
A100 GPUs.

C. Real-Robot Experiments
C.1. Real-Robot Setup
Optimization. We apply image augmentations using Col-
orJitter from the torchvision library, with brightness set to
0.3, contrast ranging from 0.7 to 1.3, saturation ranging
from 0.7 to 1.3, and hue set to 0.07. Further details are
provided in the code.
Variance Robustness. To evaluate the robustness of Dita,
we further validate its performance under different vari-

ances, including:
• Background changes. The background includes both the

tabletop color and the backdrop. We introduce variance in
both aspects by using tablecloths in colors different from
the tabletop and a black backdrop.

• Non-target object arrangements. We randomly place
non-target objects in arbitrary poses within the robot’s
workspace to create a cluttered scene, whereas it remains
clean during demonstration recording.

• Lighting conditions. We modify the lighting by turning
off one of the two lights in the room to introduce variation
in illumination.

C.2. Details of Real-Robot Tasks
In addition to the fundamental tasks used for quantitative
comparison with prior approaches, we incorporate complex
long-horizon tasks that previous methods fail to complete
for illustrative purposes. Below, we present all tasks along
with their step-wise decomposition.
• Pick the banana into the box. We divided this task into

two steps: first, successfully picking up the banana, and
second, successfully placing it into the box.

• Pick the kiwifruit in the box. We divided this task into
two steps: first, successfully picking up the kiwifruit, and
second, successfully placing it into the box.

• Pouring the coffee beans into the bowl. This task is di-
vided into two steps: first, successfully picking up the
cup, and second, successfully pouring the coffee beans
within the cup into the box.

• Pouring the water from the teapot into the cup. This
task is divided into two steps: first, successfully picking
up the teapot, and second, successfully pouring the water
into the cup.

• Stacking three bowls. This task is divided into two steps:
Stacking the first bowl successfully, and second stacking
the left bowl into previous stacked bowls.

• Stacking three nesting dolls. This task is divided into two
steps: Stacking the first two small dolls successfully, and
second stacking the large doll into previous stacked dolls.

• Pick the banana and insert into the small pen container.

This task is divided into two steps: first, successfully
picking up the banana, and second, successfully inserting
the banana into the pen container.

• Open the Flip-top door box and the pick up the small

cube inside. This task is divided into two steps: first,
successfully open the door box, and second, successfully
picking up the small cube.

• Open the drawer. This task has only one step.
• Close the drawer. This task has only one step.
• Pick up the bowl within the drawer and pouring the cof-

fee beans into the outside bowl. This is a long horizon
task, and we demonstrate it with video in the supplemen-
tary appendix given that previous approaches fail to com-

plete the task.
• Pick up the racket and hit the ball into the goal This is a

long horizon task, and we demonstrate it with video in the
supplementary appendix given that previous approaches
fail to complete the task.

• Open the top drawer, then pick the cube into the drawer,

and finally close the drawer. This is a long horizon task,
and we demonstrate it with video in the supplementary
appendix given that previous approaches fail to complete
the task.

• Close the top drawer, then open the bottom drawer and

put the bowl into the drawer, and finally close the drawer.

This is a long horizon task, and we demonstrate it with
video in the supplementary appendix given that previous
approaches fail to complete the task.

• Open the box and move the green cube into the box then

close the box. This is a long horizon task, and we demon-
strate it with video in the supplementary appendix given
that previous approaches fail to complete the task.

C.3. Finetuing Details

We adhere to [32] and employ LoRA for 10-shot finetuning.
However, Dita comprises only 221M trainable parameters,
with merely 5% (approximately 11M) remaining trainable
under LoRA finetuning. We contend that this limited ca-
pacity is inadequate to effectively accommodate image aug-
mentations, thereby compromising robustness against envi-
ronmental variances. To this end, we evaluate robustness
through full finetuning and observe a substantial improve-
ment in the success rate for long-horizon tasks, alongside
greater resilience to variances such as background changes,
non-target object arrangements, and lighting conditions.
Quantitatively, full finetuning achieves a success rate of
20%, whereas LoRA finetuning fails to complete tasks un-
der extreme variances.

D. Analysis, Ablations, and Discussions

D.1. Practices on reproducing Octo and OpenVLA

We observe that OpenVLA [32] demonstrates superior
pick-up performance compared to Octo [72]. However, for
tasks requiring the learning of rotational operations, such as
opening a box, Octo achieves better performance. We at-
tribute this to Octo’s ability to predict continuous actions,
which are less sensitive to action normalization, whereas
OpenVLA relies on action discretization based on action
statistics. We compute the statistics from the 10-shot train-
ing samples across all tasks and find it challenging to obtain
suitable statistics for discretization values, which are unnec-
essary for the diffusion policy.

Figure 11. Convergence Analysis on OXE dataset [9]. The blue
line is DiT Policy, and the orange line is Diffusion action head
strategy with the same number of parameters.

Table 7. Additional experiments on Calvin (ABC→D). ‘aug’ in-
dicates image augmentation during finetuning.

Method No. Instructions in a Row (1000 chains)
1 2 3 4 5 Avg.Len.

Dita w/o aug 94.5% 82.5% 72.8% 61.3% 50.0% 3.61
Dita w/aug 92.3% 83.8% 75.8% 67.3% 69.0% 3.78

w/o pretraining w/ aug
Dita (2 layers) 75.8% 47.3% 29.3% 19.0% 12.5% 1.84
Dita (6 layers) 80.5% 60.0% 39.0% 26.3% 15.0% 2.21

Dita (12 layers) 84.5% 65.5% 48.8% 34.5% 22.5% 2.56
Dita (24 layers) 87.8% 67.5% 48.5 % 34.5 % 23.0% 2.61

Dita 84.5% 65.5% 48.8% 34.5% 22.5% 2.56
AdaLN DiT [17] 68.3% 40.0% 21.0% 11.3% 5% 1.45

D.2. Convergence Analysis
Figure 11 illustrates the convergence comparison between
the diffusion head baseline EDiff

ω
and Dita. Dita achieves

clearly faster convergence than EDiff

ω
. We believe this fur-

ther highlights the scalability of Dita.

D.3. Failure Analysis
Figure 12 illustrates two representative failure cases. The
first case involves a failed grasp during execution. Although
the model is capable of recovering and retrying, the failure
suggests an inability to approach the correct position for a
successful pickup. The second case concerns pouring while
in motion, where the model tends to spill the contents due
to unstable handling.

D.4. More Ablations
Learning Rate Scheduler. As outlined in the main text,
we utilize a standard learning rate scheduler to decay the
learning rate during the experiments in Calvin, rather than
using a fixed learning rate of 1e ↑ 4 as in the pretraining

Figure 12. Failure Cases Analysis.

Table 8. The ablation study on the learning rate scheduler in the
Calvin benchmark.

Strategy No. Instructions in a Row (1000 chains)
w lr decay 94.5% 82.5% 72.8% 61.3% 50.0% 3.61

w/o lr decay 91.8% 80.0% 68.0% 56.9% 45.9% 3.43

Table 9. More action designs w/o pretraining on Calvin
(ABC→D). MDT is from issue 9 of its GitHub repo and GR-MG.

Methods No. Instructions in a Row (1000 chains)
MDT* [61] 61.7% 40.6% 23.8% 14.7% 8.7% 1.54

Unet1D head [17] 76.8% 46.5% 28.8% 18.5% 10.0% 1.80
Transformer head [17] 75.8% 44.8% 26.5% 16.5% 8.0% 1.72

8-layer MLP head 69.8% 42.5% 26.3% 16.8% 11.0% 1.66
3-layer MLP head 75.5% 44.8% 25.0% 15.0% 7.5% 1.68

Single token act chunks 56.5% 18.3% 6.0% 2.8% 0.8% 0.84
Ours 89.5% 63.3% 39.8% 27.3% 18.5% 2.38

Table 10. The effect of the number of execution steps (# Steps) on
ManiSkill2.

Steps 1 2 4 8 16
All 61.6% 60.8 % 60.6 % 60.0 % 58.0 %

stage. This adjustment results in a slight performance im-
provement, as shown in Table 8.

Table 11. Ablation study of shuffle buffer size on SimplerEnv
(both math and variant results of Google Robot [8]).

Shuffle Buffer Size coke can
match variant

128000 71.2% 73.6%
256000 83.7% 85.5%

Diffusion Head. We implement several policies inspired
by the core idea of the diffusion action head, which differ
slightly from Octo [72] in predicting action chunks. Specif-
ically, Octo [72] flattens action chunks into a single vector
with a unified embedding. For instance, when predicting 8
actions, it generates a 8 → 7 = 56-dimensional vector. In
contrast to the Octo-style diffusion action head, we adopt a

Table 12. The impact of the number of denoising steps (# Steps)
of DDIM on Google Robot Simulation during inference, trained
with 1000 DDPM denoising steps.

Steps 100 50 20 10 5 2
Pick Coke (variant) 76.4 79.1 85.5 85.3 82.7 70.4
Pick Coke (match) 79.7 83.3 83.7 82.0 82. 73.3
Move Near (variant) 52.1 66.0 73.0 69.5 63.5 51.6
Move Near (match) 49.1 72.0 76.0 74.0 72.0 65.0

diffusion action head, akin to Diffusion Loss [35] and Dif-
fusion Force [14], which are more effective. We evaluate
multiple diffusion heads, including Unet1D, Transformer,
and MLP on Calvin without pretraining.

Table 9 shows that Dita achieves the better generaliza-
tion on Calvin (ABC↓D), compared to other diffusion head
strategies [3, 17, 85].
Execution steps. Since Dita can anticipate multiple future
actions, we can execute multiple steps within a single infer-
ence. Here, we analyze the impact of execution steps under
a model with a trajectory length of 32, as presented in Ta-
ble 10. The ablation study reveals that shorter execution
steps yield slightly better results than longer ones; that is,
the further the prediction extends from the current frame,
the lower its accuracy. Nevertheless, the slight performance
drop demonstrates that even with only 2-frame image obser-
vations, Dita can generate reliable action trajectories, under-
scoring its scalability.
Shuffle Buffer Size. The shuffle buffer size of TensorFlow
datasets has a significant impact on performance. Follow-
ing OpenVLA [32, 54], we utilize TensorFlow datasets for
network optimization, where the shuffle buffer size sim-
ilarly influences performance (Table 11), as observed in
Octo [72].
Denoising steps. Typically, diffusion models require multi-
ple denoising steps in image generation [62]. For diffusion-
based policies in robot learning, the number of denoising
steps during inference can impact control frequency. Sur-
prisingly, we find that DDIM significantly reduces the de-
noising steps to 10 without compromising performance on
the ”Pick Coke” task as described in Table 12. With only
2 denoising steps, the model still achieves a 70.4% suc-
cess rate. We attribute model performs best with 10 steps
to the reduction of overfitting when fewer denoising steps
are used. Unlike image generation, the action dimension
in robot learning is much smaller, allowing effective de-
noising with fewer steps without requiring advanced tech-
niques [70]. These results suggest that the in-context con-
ditioning used by Dita does not hinder inference speed.

	Introduction
	Related Work
	Method
	Architecture
	Training Objective
	Pretraining Data
	Pretraining Details

	Simulation Experiments
	Baselines
	SimplerEnv
	LIBERO
	CALVIN
	ManiSkill2
	Ablation Study

	Real-Robot Experiments
	Real-Robot Task Finetuning
	Qualitative Comparison

	Conclusion
	Acknowledgment
	Model and Training Scheme
	Simulation Benchmarks
	SimplerEnv
	LIBERO
	CALVIN
	Maniskill2

	Real-Robot Experiments
	Real-Robot Setup
	Details of Real-Robot Tasks
	Finetuing Details

	Analysis, Ablations, and Discussions
	Practices on reproducing Octo and OpenVLA
	Convergence Analysis
	Failure Analysis
	More Ablations

