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Supplementary Material

This supplemental material mainly contains:

• Representations of δt and ζt in Equ. (2) for different
schedulers in Sec. A.

• Alternative implementation of Omegance for flow match-
ing scheduler in Sec. B.

• Step-by-step derivations of the modified SNR in Equ. (5)
in Sec. C.

• Implementation of example omega schedules in Fig. 6 in
Sec. D.

• More image-to-image generation applications in Sec. E.
• More text-to-video results in Sec. F.
• Calculation of High-Frequency Energy (HFE) in Sec. G.
• A detailed description of user study setup in Sec. H.
• More discussions in Sec. I.
• More implementation details in Sec. J.
• More qualitative results in Sec. K.

A. Representations of δt and ζt

Equation 2 (recapped below) provides a general representa-
tion of one denoising step in the diffusion reverse process.
We provide detailed formulas of how to convert different
denoising schedulers to the general representation.

zt−1 = δt · zt + ζt · ϵθ(zt, t)︸ ︷︷ ︸
“direction pointing to z0”

(1) DDIM scheduler [13]:
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(2) Euler discrete scheduler [4]:

zt−1 = zt + (σt+1 − σ̂) · ϵθ(zt, t)
= δt · zt + ζt · ϵθ(zt, t)

where

δt = 1

ζt = σt+1 − σ̂

(3) Flow-matching scheduler [1]:

zt−dt = zt + dt · vθ(zt, t)
= δt · zt + ζt · ϵθ(zt, t)

where

δt = 1

ζt · ϵθ(zt, t) ≈ dt · vθ(zt, t)

B. Alternative Implementation of Omegance in
Flow Matching Scheduler

We additionally explored an alternative implementation of
Omegance for flow-matching-based sampling. Given the
clean latents z0 and Gaussian noise ϵ ∼ N(0, 1), noisy la-
tents in flow-matching scheduling is zt = (1− t)z0 + t · ϵ.
Therefore, vt = dzt

dt = ϵ− z0.
Given the model predicted velocity vθ(zt, t) at time t,

the estimated clean latents would be:

ẑ0 = zt + t · vθ
Then the estimated Gaussian noise is

ϵ̂ = vθ + ẑ0 = zt + (t+ 1) · vθ
We then apply Omegance by scaling the estimated noise:

ϵ̂′ = ω · ϵ̂
The updated velocity becomes

v′θ = ϵ̂′ − ẑ0

= ω · (vθ + ẑ0)− ẑ0

= ω · vθ + (ω − 1)ẑ0

= ω · vθ + (ω − 1)(zt + t · vθ)
= (ω − 1)zt + (ω + t · ω − t)vθ

Compared to our main implementation, which directly
modulates the velocity as v′θ = ω · vθ, this formulation
introduces a dependence on the estimated Gaussian noise.
Empirically, both approaches produce comparable outputs.
Conceptually, our method better aligns with the continuous
nature of flow-matching, treating ϵ as a fixed endpoint rather
than a step-wise quantity.



C. Modified SNR Derivations
In DDIM denoising process,

zt−1 =
√
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So the original SNR during the reverse process is still:
SNR(t− 1) = αt−1

1−αt−1
. In the derivation above, we model

the noise prediction ϵθ as an ideal approximation of the ac-
tual noise ϵ ∼ N(0, 1). While ϵθ is technically the mini-
mum MSE estimator of ϵ and may not follow the exact same
distribution, this approximation allows for a tractable and
interpretable formulation of how the effective SNR evolves
under different ω settings. Such ideal approximation is used
in modified SNR derivations as well.

Equation 5 shows the modified SNR based on DDIM de-
noising equation. The step-by-step derivations are provided
below:
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Substitute zt =
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isolate z0 and ϵ terms, we get:
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Therefore, the modified SNR is:
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Since αt monotonically decreases in diffusion model, so
αt−1 > αt and 1 − αt > 1 − αt−1. Therefore,√
αt
√
1− αt−1 − √

αt−1

√
1− αt is always negative and

SNR′ increases as ω increases.

D. Omega Schedule Examples Implementation

Detailed implementations of four example omega schedules
shown in Fig. 6(a) are listed below. Please take notes that
these examples are only for illustration. Users are free to
design their own schedules following the effects in Fig. 4.

1 import numpy as np
2

3 def exponential_scheduler(initial_lr, min_lr,
gamma, steps):

4 return [(initial_lr - min_lr) * (gamma **
step) + min_lr for step in range(steps)]

5

6 def cosine_scheduler(initial_lr, min_lr, steps,
alpha=1.0):

7 lr_schedule = []
8 for step in range(steps):
9 lr = min_lr + 0.5 * (initial_lr - min_lr)

* (1 + np.cos(alpha * np.pi * step / steps))
10 lr = min(lr, initial_lr if step == 0 else

lr_schedule[-1])
11 lr_schedule.append(lr)
12 return lr_schedule
13

14 # Mirrored functions w.r.t. y = 1.0
15 def exponential_scheduler_mirrored(initial_lr,

min_lr, gamma, steps):
16 original = exponential_scheduler(initial_lr,

min_lr, gamma, steps)
17 return [2 - lr for lr in original]
18

19 def cosine_scheduler_mirrored(initial_lr, min_lr,
steps, alpha=1.0):

20 original = cosine_scheduler(initial_lr,
min_lr, steps, alpha)

21 return [2 - lr for lr in original]
22

23 # Parameters
24 steps = 50
25

26 # Omega schedulers
27 exp1 = exponential_scheduler_mirrored(1.05, 1.0,

0.9, steps)
28 exp2 = exponential_scheduler_mirrored(1.1, 0.9,

0.9, steps)
29 cos1 = cosine_scheduler_mirrored(1.0, 0.95, steps

, 1.5)
30 cos2 = cosine_scheduler(1.1, 0.9, steps, 0.9)

Listing 1. Implementation details of omega schedule examples
shown in Fig. 6(a).

E. More Image-to-Image Generation

SDEdit. For image-to-image editing using SDEdit [7], we
use the off-the-shelf semantic segmentation tool SAM2 [9]
to generate the segmentation masks for the input images,
enabling the application of omega masks to specific seg-
mentation regions. Results are demonstrated in Fig. A.
Real Image Editing. Omegance can also be applied spa-
tially in real-image inversion tasks to achieve granularity
editing of specific objects. The masks can be obtained from
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Figure A. Spatial effects of mask-based Omegance in SDEdit
results. Segmentation masks are obtained using SAM2 [9].
Omegance can achieve precise spatial granularity control without
altering untouched regions.

Input Image ReNoise Inversion ReNoise + Omegance

Figure B. Spatial effects of mask-based Omegance in ReNoise in-
version results. By inverting an image and applying Omegance
with desired masks, the users can easily modify the granularity of
any real images.

either segmentation tools or user-provided strokes. The re-
sults using ReNoise inversion [2] are presented in Fig. B.
Image Inpainting. We further generalize the use of
Omegance to image inpainting task. Figure C shows the
results of performing image inpainting using SDXL [8].

F. More Text-to-Video Generation
Omegance’s granularity control ability in more text-to-
video applications, e.g., Latte [6] and AnimateDiff [3], are
demonstrated in Fig. D. In Fig. D (a), “ω increasing” (de-
tail suppression) leads to a less complex background and
smoother texture, which highlights the main character and
presents a more visually pleasing result. Additionally, cur-
rent text-to-video generation techniques often suffer from

Input Image & 
Inpainting Mask

Original More DetailLess Detail

Figure C. Effects of Omegance in image inpainting task.
Omegance can effectively control the granularity of infilling re-
gion, making it more flexible for the users to get their desired re-
sults.
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(b) Effect of Omegance in fixing visual artifacts in Text-to-Video Results. 

(a) Effect of Omegance in granularity control  in Text-to-Video Results.

Figure D. Effects of Omegance in Text-to-Video results. The em-
ployed T2V models and prompts are shown above, with ω varia-
tions on the right. Omegance enables granularity control in gen-
erated videos while preserving temporal coherence and can occa-
sionally fix artifacts.

visual artifacts in the output, as illustrated in the first row of
Fig. D (b), where an unintended flow effect appears in the
sky. Applying Omegance can effectively remove the above
artifact as demonstrated in the second row of Fig. D (b).

G. High-Frequency Energy Calculation
A detailed calculation of the high-frequency energy (HFE)
of an image is shown below. The final reported Mean HFE
is averaged across all generated images.

1 def high_frequency_energy(image_tensor):
2 """



3 Measure the high-frequency energy of an image
4

5 Args:
6 image_tensor (torch.Tensor): Input image

tensor of shape (C, H, W) for RGB or (H, W)
for grayscale. Values should be normalized to
[0, 1] or [0, 255].

7

8 Returns:
9 float: Mean high-frequency energy of the

image.
10 """
11 # Convert RGB to grayscale
12 if len(image_tensor.shape) == 3 and

image_tensor.shape[0] == 3: # RGB image
13 image_tensor = rgb_to_grayscale(

image_tensor)
14

15 # Ensure the image is grayscale
16 if len(image_tensor.shape) != 2:
17 raise ValueError("Input must be a

grayscale image of shape (H, W).")
18

19 # Compute the Fourier Transform
20 dft = torch.fft.fft2(image_tensor)
21

22 # Shift the zero-frequency component to the
center

23 dft_shifted = torch.fft.fftshift(dft)
24

25 # Compute the magnitude spectrum
26 magnitude = torch.abs(dft_shifted)
27

28 # Define a center region to exclude low
frequencies

29 H, W = magnitude.shape
30 center_x, center_y = H // 2, W // 2
31 radius = min(H, W) // 8 # Exclude the lowest

1/8th frequency
32

33 # Create a high-pass mask
34 y, x = torch.meshgrid(torch.arange(H), torch.

arange(W), indexing="ij")
35 mask = ((x - center_x)**2 + (y - center_y)

**2) > radius**2
36

37 # Apply the mask to extract high frequencies
38 high_freq_magnitude = magnitude * mask
39

40 # Compute the mean high-frequency energy
41 mean_high_freq_energy = torch.mean(

high_freq_magnitude**2).item()
42

43 return mean_high_freq_energy

Listing 2. Implementation details of High-Frequency Energy as
measurement for detail level.

H. User Study
To demonstrate the effectiveness of Omegance in control-
ling image granularity and preserving image quality, we de-
sign a two-part user study.

In Part 1, for each question, the participants are given
three images, one generated by the base model, and the

other two by the base model with Omegance. The partici-
pants are asked to select the rank of image granularity (from
high to low) that best matches their inspection. Instructions
about granularity are given: Granularity in the context of
image generation refers to the level of detail and texture
richness in a visual output. High granularity corresponds
to intricate textures, complex patterns, and rich visual den-
sity, while low granularity is associated with smoother tran-
sitions, minimal detail, and simpler compositions. The mo-
tivation behind such design is that if the granularity rank
can be correctly distinguished by the users, it proves the ef-
fectiveness of Omegance in controlling image granularity.
The images used in Part 1 are generated by SDXL [8] and
FLUX [5] using global Omegance. For quantitative eval-
uation, we consider each rank position separately and cal-
culate the accuracy independently. The final average rank
accuracy is the average accuracy of all rank positions.

In Part 2, our objective is to illustrate that Omegance
does not harm the base model’s quality and can occasion-
ally improve it by fixing artifacts and enhancing realism.
We present two contents generated by the base model with
and without Omegance and ask the users to select the one
with better quality. The instructions on visual quality defi-
nition are given as: Visual quality refers to the overall per-
ceptual appeal and coherence of a generated content, en-
compassing aspects such as sharpness, realism, fidelity to
given prompt, and freedom from artifacts. We believe that
by achieving over 50% votes in quality competition, it is
sufficient to prove that Omegance can achieve at least equal
quality outcomes as the base model. The results used in
Part 2 are generated by SDXL [7], FLUX [5], RealVisXL-
5.0 [11], AnimateDiff [3], and Latte [6]. We report the over-
all percentage of votes indicating that our method achieves
equal or higher quality over the base model as our quality
evaluation in Tab. 3 of the main paper. Detailed percentages
of separate vote rates indicating our method achieves better,
equal or worse quality are shown below:

Table A. Detailed vote rate of our method showcasing better,
equal, or worse quality. Most users chose our method as the one
with better quality.

Better Equal Worse

67.62% 13.76% 18.61%

I. Discussion
In this section, we discuss several settings that achieve sim-
ilar effects in granularity or motivate our design choices.

I.1. Change Inference Steps
An intuitive approach to influencing the granularity of gen-
erative outputs is to adjust the number of inference steps.
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Figure E. Change of omega (left) vs. Change of number of infer-
ence steps (right). Example 1. The orange box indicates default
results when ω = 1.0 and the number of inference steps = 50.
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Figure F. Change of omega (left) vs. Change of number of infer-
ence steps (right). Example 2. The orange box indicates default
results when ω = 1.0 and the number of inference steps = 50.



However, as observed in our experiments, linearly increas-
ing the number of steps does not provide consistent gran-
ularity control. Figure E and F demonstrate this using
SDXL [8] with the Euler discrete scheduler [4], where
changes in layout complexity and texture richness caused
by increasing steps show irregular patterns compared to
the consistent effects achieved with Omegance. Moreover,
modifying the number of steps impacts the entire image
globally, offering no capacity for region-specific adjust-
ments. In contrast, Omegance enables localized control
through omega masks and schedules. Omega masks al-
low region-specific granularity adjustments, enhancing or
suppressing detail in specific regions while preserving un-
selected areas, and omega schedules can refine layout or
texture granularity at different denoising stages. This flex-
ibility is especially valuable for real-world design tasks,
where different regions or elements require varying levels
of detail. Besides, increasing steps adds computational
overhead without guaranteeing significant improvements
in granularity control, while Omegance provides granular-
ity manipulation within a fixed inference schedule with no
extra cost, maintaining computational efficiency and output
fidelity.

In summary, adjusting inference steps is a coarse mech-
anism for granularity control, as it alters the overall
denoising dynamics without offering fine-tuned control.
Omegance, by operating directly within the existing denois-
ing framework, delivers precise, user-driven adjustments
without additional computational cost.

I.2. Change Latent Mean

In Omegance, we carefully preserve the mean of zt while
altering its variance. This design choice is motivated by our
observation that changes in the latent mean lead to color
shifts in the final decoded outputs. This phenomenon can
be verified by directly modifying the mean of VAE-encoded
latents in a latent diffusion model [10]. Given an original
image in Fig. G(a) as x0, we encode the image to latent
z0 using the VAE used in SD3 [1] and modify the mean of
z0 directly. The results of increasing and decreasing latent
mean are shown in Fig. G(b) and (c), respectively. These
results reveal that the green channel is particularly sensitive
to mean changes, while the red channel is the least affected.
Consequently, increasing the mean causes the green color to
dominate, while decreasing it leads to a dominance of red
tones, producing undesirable color shifts. To avoid such ar-
tifacts, we ensure mean preservation in the implementation
of Omegance.

J. More Implementation Details

In this section, the implementation details for producing the
demo contents are explained.

J.1. Prompts for Demo

We use Large Language Model to help generate prompts.
Figure 1(a): A serene lake at dawn, with crystal-clear wa-
ter reflecting snow-capped mountains and a soft pink sky.
In the foreground, delicate wildflowers bloom along the
shoreline, while a small wooden rowboat drifts quietly. The
smooth, mirror-like surface of the lake contrasts with the

(a) Original image.

(b) Increasing latent mean. Top: +1.0; Bottom: +5.0

(c) Decreasing latent mean. Top: -1.0; Bottom: -5.0

Figure G. Effects of latent mean changes on image RGB mean
with analysis.



rich details of the flowers, boat, and distant mountains, all
softly illuminated by the gentle morning light.
Figure 1(b): A wise wizard in a long, starry cloak stands
in an enchanted forest clearing, with towering trees and vi-
brant mushrooms glowing softly. Around him, floating mag-
ical orbs and sparkling fireflies create a mystical ambiance,
while wildflowers and ivy-covered stones add texture to the
scene.
Figure 1(c): A bustling medieval marketplace filled with
colorful tents and stalls, where merchants display spices,
textiles, and jewelry. Cobblestone streets wind between the
booths, and in the distance, a towering castle rises against
the horizon.
Figure 3 SDXL (Left): A gentle healer dressed in flowing
robes stands beside a calm forest pond, her hand extended
over the water as soft, glowing light surrounds her. The
pond’s smooth surface reflects her figure and the towering
trees around, while small, vibrant wildflowers dot the mossy
shore.
Figure 3 SDXL (Middle): A peaceful Japanese zen garden
at dusk, with smooth raked sand patterns surrounding moss-
covered stones and a gentle, flowing stream reflecting the
warm glow of lantern light.
Figure 3 SDXL (Right): A futuristic space station interior
with rounded, smooth walls and control panels filled with
colorful buttons and screens. Astronauts in sleek spacesuits
float gently in zero gravity, surrounded by floating tools and
shimmering holographic displays showing star maps and
distant planets.
Figure 3 SDXL + FreeU: A bustling riverside café painted
in impressionist style, where figures in soft, muted tones
gather under glowing lanterns. The river reflects the lights,
creating smooth, rippling patterns as the colors blend seam-
lessly with the surrounding trees and buildings.
Figure 3 RealVisXL-5.0: A serene meadow at sunrise, with
a vintage picnic blanket spread out under a large oak tree.
Wildflowers in pastel colors bloom across the soft grass,
and a wicker picnic basket filled with freshly baked bread
and fruit adds to the idyllic, pastoral scene.
Figure 3 SD3: A celestial observatory with smooth, pol-
ished floors and a massive domed ceiling painted with con-
stellations in deep blues and silvers. A large telescope
stands at the center, and intricate star maps and charts are
scattered around, bathed in the soft, ambient light of glow-
ing stars.
Figure 3 FLUX: A cozy anime café on a rainy afternoon,
where customers sit at tables enjoying warm drinks as rain-
drops patter against the large windows. Soft, warm light-
ing gives the café a welcoming feel, with framed pictures,
books, and cushions scattered around, adding rich detail to
the snug interior.
Figure 5: A boy is playing Pokemon.
Figure 6: A quaint alpine village market in winter, with

stalls selling handmade crafts, baked goods, and hot drinks,
nestled between snow-covered wooden chalets. Pine trees
and mountain peaks frame the background, while a soft
snowfall adds charm to the festive, bustling atmosphere.
Figure 7 SDXL Pose (Left): Darth vander dancing in a
desert, high quality.
Figure 7 SDXL Pose (Right): An elven warrior princess
stands in a lush forest glade, her armor decorated with
delicate leaf patterns and shining gemstones. Her cape is
embroidered with nature motifs, and her ornate bow and
quiver add a touch of elegance, creating a striking blend of
nature and nobility.
Figure 7 SDXL Depth (Left): A topiary plant decorated
by flowers.
Figure 7 SDXL Depth (Right): A sleek, futuristic robot
with a polished metallic body and glowing blue eyes, stand-
ing upright with articulated limbs and fine details in its
joints and circuitry. Soft lights reflect off its surface, high-
lighting its advanced design and smooth, streamlined form.
Figure 7 SDXL Canny (Left): Aerial view, a futuristic re-
search complex in a bright foggy jungle, hard lighting.
Figure 7 SDXL Canny (Right): A stunning piece of jew-
elry featuring a delicate, silver pendant encrusted with
sparkling diamonds and a large, brilliant-cut sapphire at
its center, suspended from a fine, intricately detailed chain
that glimmers in soft light.
Figure 7 FLUX Canny (Right): A sparkling crystal man-
sion stands in the middle of a blooming meadow, its walls
refracting sunlight into brilliant rainbows. Delicate cherry
blossom trees line the cobblestone path leading to the
ornate glass doors, while butterflies flutter in the gentle
breeze.
Figure 7 FLUX Canny (Left): A whimsical, pastel-colored
cottage with a gently sloping roof and rounded windows sits
amidst a vibrant garden of oversized flowers. A cobblestone
path leads to the arched wooden door, and sparkling lights
hang from the eaves, glowing softly under the golden after-
noon sun.
Figure A (Top): A creamy white marble table sprinkled
with tiny violet and daisy blooms supports a classic white
plate with thin, golden edges. The chocolate cake, layered
with dark chocolate curls and topped with vibrant berries,
sits beautifully on the plate, creating a striking contrast be-
tween the lush texture of the cake and the refined elegance
of the setting.
Figure A (Bottom): A cool fox wearing sunglasses leaning
on a rusted water pipe.
Figure B (Top): A glass vase filled with flowers.
Figure B (Bottom): A kitten in a basket.
Figure C: A loosely arranged bouquet of wildflowers in a
glass jar sits in the center of the bench, with petals and
leaves spilling over the edge. The soft textures of the flowers
balance the structure of the jar and bench for a touch of



Figure H. Visualization of omega rescale function.

elegance.

J.2. Negative Prompt
We use negative prompts where applicable to help improve
generation quality: “distorted lines, warped shapes, un-
even grid patterns, irregular geometry, misaligned symme-
try, low quality, bad quality”.

J.3. Omega Rescale
As mentioned in Sec. 3.2, we rescale omega to allow finer-
grained control within (−∞,∞) input range by:

ω = R(ϖ) = L+
U − L

1 + e−k·ϖ (1)

The default rescaling function for SDXL [8] model is visu-
alized in Fig. H with k = 0.1, L = 0.95, U = 1.05. In this
case, ϖ within [−10.0, 10.0] would present visible effects.
The sensitivity of visual changes to different ϖ values are
illustrated in Fig. I. In SD3 [1] and FLUX [5], the range of
ω should be larger around [0.8, 1.2].

J.4. Number of Inference Steps
The default inference steps are set to 50 for SDXL [8],
4 for FLUX-Schnell [5], and 28 for SD3 [1]. However,
Omegance remains compatible with other inference step
configurations, provided that the base model produces valid
results.

K. More Qualitative Results
In this section, we show more examples of Omegance
in SDXL [8], SDXL+FreeU [12], RealVisXL-V5.0 [11],
SD3 [1], FLUX [5], and ControlNet [14]. Control signals
are indicated in the top left corner of the original results.
Omega masks used are indicated in the bottom left corner
of the corresponding Omegance-edited results. Red for de-
tail enhancement, blue for detail suppression.
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