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Figure 4. Illustration of BNNeck in BoT [33]. FC and BN for
Fully-Connected Layer and Batch Normalization, Ltp and Lce for
Triplet and Cross-Entropy Loss.

Figure 5. Illustration of Multi-Branch Architectures in MGN [52].
HS for Horizontal Split.

6. Appendix

6.1. Methodology

6.1.1. Illustration of BNNeck and Multi-Branch

BNNeck [33] and Multi-Branch Architectures [52] are two
fundamental modules that have demonstrated significant ef-
fectiveness in person re-identification and have been incor-
porated into ARBase for animal re-identification. More
specifically, BNNeck introduces a batch normalization
layer that decouples the features generated by the back-
bone into two distinct spaces, which are then utilized for the
independent computation of triplet loss and cross-entropy
loss, respectively. On the other hand, Multi-Branch Archi-
tectures [52] employ a horizontal partitioning approach to
divide the extracted features, producing fine-grained, part-
level feature representations.

In the main paper, we provide a concise textual descrip-
tion of these modules. For further clarity, the structures and
functionalities of these modules are visually illustrated in
Figures 4 and 5, respectively, to assist the readers in better
understanding their operations.

Table 6. Dataset statistics. #ID and #Img for number of identities
and images in each subset.

Datasets Train Set Probe Set Gallery Set
#ID #Img #ID #Img #ID #Img

HyenaID [1] 145 1535 110 220 111 1374
LeopardID [2] 260 3058 122 244 170 3504

SeaTurtleID [3] 224 3790 172 344 176 3448
WhaleSharkID [19] 320 3847 197 394 223 3452

Table 7. Ablation study on Data and Backbone. IBN for Instance-
Batch Normalization, MB for Multi-Branch Architecture.

Method Input
Resolution

LeopardID SeaTurtleID
R1 mAP R1 mAP

BoT [33] [256,128] 54.92 27.65 84.01 41.92
AGW [56] [256,128] 54.10 28.67 85.17 46.18
SBS [16] [384,128] 51.23 26.54 84.01 44.63

MGN [52] [384,128] 53.69 28.21 86.05 46.67

BoT [33] [384,384] 62.70 34.64 86.05 49.18
AGW [56] [384,384] 60.66 34.55 88.08 53.80
SBS [16] [384,384] 59.43 33.12 86.92 52.40

MGN [52] [384,384] 61.48 33.64 88.66 53.52

ARBase(w/o IBN) [384,384] 64.34 36.82 88.37 54.57
ARBase(w/o MB) [384,384] 63.11 34.99 88.95 55.39
ARBase(Ours) [384,384] 64.34 37.08 86.92 55.99

6.2. Experiments
6.2.1. Setup
Datasets In Section 3.2, we provided a brief introduc-
tion to the datasets used in our experiments, namely Hye-
naID [1], LeopardID [2], SeaTurtleID [3], and Whale-
SharkID [19]. The detailed statistics for these datasets are
presented in Table 6. It is important to note that the identi-
ties used for training and testing do not overlap.

Implementation Details For person re-identification
methods, we adhere to their original configurations. For
ARBase, the batch size is set to [4, 16] (4 identities and 16
samples per identity). We use m = 0.3 in Eq (1) for the
triplet loss and ϵ = 0.1 in Eq (2) for the cross-entropy loss.
The initial learning rate is set to 0.00035, and the training
lasts for 120 epochs.

6.2.2. More Ablation Studies
In Table 7 and Table 9, we present the ablation studies of
ARBase (i.e., Data, Backbone, Head, Loss, and Training
& Testing) on two additional benchmarks, namely Leop-
ardID [2] and SeaTurtleID [3]. The experimental settings
remain consistent with those used in the main paper.



Table 8. Performance comparison to ResNet50 equipped with either triplet loss or ArcFace loss under the open-set setting, trained sepa-
rately on each dataset. R1 for Rank-1 Accuracy, mAP for mean Average Precision.

Method Input
Resolution

HyenaID [1] LeopardID [2] SeaTurtleID [3] WhaleSharkID [19]
R1 mAP R1 mAP R1 mAP R1 mAP

ResNet50 + Triplet [256, 128] 48.18 31.03 47.54 24.99 70.93 33.05 34.01 13.54
ResNet50 + ArcFace [256, 128] 50.45 26.95 44.67 21.09 72.97 32.29 42.39 14.97
ResNet50 + Triplet [384, 384] 56.36 37.01 47.95 26.83 75.87 41.90 41.12 16.89

ResNet50 + ArcFace [384, 384] 53.64 29.91 48.36 20.92 77.03 34.14 48.98 17.86
ARBase (Ours) [384, 384] 73.18 44.87 64.34 37.08 86.92 55.99 62.44 29.45

Table 9. Ablation study on Head, Loss and Training.

Method LeopardID SeaTurtleID
R1 mAP R1 mAP

ARBase (w/o BNNeck) 56.97 31.43 76.45 43.44

ARBase (w/o Label Smoothing) 64.34 37.28 86.92 52.29

ARBase (w/o Cosine Annealing) 63.93 37.78 89.53 56.52

ARBase(Ours) 64.34 37.08 86.92 55.99

It is important to highlight that our primary objective is
to develop a robust base model that generalizes well across
various species, rather than optimizing for the highest per-
formance on a single benchmark. For instance, the highest
performance on SeaTurtleID is achieved by ARBase with-
out the use of cosine annealing. To this end, we adopt the
designs for ARBase that have demonstrated effectiveness
across at least three different benchmarks. Despite this fo-
cus on generalization, ARBase achieves state-of-the-art per-
formance on all benchmarks, significantly outperforming
the baseline models. Notably, ARBase improves the mAP
by 9.32% on SeaTurtleID compared to the best-performing
baseline, as shown in Table 3.

6.2.3. More Performance Comparison
Comparison to MegaDescriptor [6]. As aforemen-
tioned, WildlifeDatasets [6] has made significant efforts
to consolidate publicly available datasets for animal re-
identification into a unified framework. Moreover, the
repository introduces a MegaDescriptor model, against
which we offer a detailed comparison with our research.

First, the MegaDescriptor model is trained on 29 pub-
licly available datasets under a closed-set setting, indicat-
ing that the training data is relatively large in scale, with
all identities present during the training phase. In contrast,
our ARBase model is trained separately on each dataset us-
ing an open-set setting, where testing identities are not in-
cluded in the training data. In our opinion, the open-set set-
ting not only presents greater challenges but also promotes
the development of innovative algorithms, as it assesses the
model’s ability to generalize to unseen identities. Besides,
our primary focus is to revisit person re-identification tech-
niques in the context of animal re-identification, aiming to
improve generalization by adopting settings similar to those

Table 10. Performance comparison to existing animal meth-
ods [28, 57] using their protocols.

Method ELPephants ATRW
R1 mAP R1(s) R1(c) mmAP

PGCFL [28] 33.4 18.5 90.8 86.3 66.9
UPBFA [57] 38.7 24.3 92.0 84.6 68.6

ARBase 60.5 43.1 96.3 86.5 70.4

in person re-identification studies [56].
Second, the MegaDescriptor model employs a standard

classification backbone with either triplet loss or ArcFace
loss6 for re-identification tasks. However, as demonstrated
in person re-identification studies [56], this paradigm may
not sufficiently capture the complexities inherent in re-
identification tasks. For experimental comparisons, we
adopt a ResNet50 backbone within our framework7, inte-
grating either triplet loss or ArcFace loss under the open-set
setting, with models trained separately on each dataset. Fur-
thermore, we assess the impact of varying input resolutions
on model performance. The experimental results, shown in
Table 8, indicate that the performance is significantly infe-
rior to that of our ARBase model.

Comparison to PGCFL [28] and UPBFA [57]. To fur-
ther validate ARBase, we compare it against two animal
methods using their evaluation protocols [28, 57] in Ta-
ble 10. PGCFL [28] proposes a pose-guided comple-
mentary feature learning method for tiger re-identification,
which enhances feature diversity by guiding network
branches to focus on different body regions. UPBFA [57]
develops an unsupervised feature alignment method with
background removal to address background bias and pose
variation in animal re-identification. As shown in Table 10,
without any modification, ARBase achieves state-of-the-art
results (R1: +21.8%, mAP: +18.8% on ELPephants), con-
firming its strong generalization ability.

6ArcFace loss is a variant of cross-entropy loss that introduces an an-
gular margin. In our experiments, the hyperparameters for this loss are set
based on the grid search strategy described in [6].

7ResNet50 serves as the backbone in ARBase as well as our revisiting
experiments.



Table 11. Statistic analysis. The average and standard deviations are obtained over three runs. R1 for Rank-1 Accuracy, mAP for mean
Average Precision.

Method HyenaID [1] LeopardID [2] SeaTurtleID [3] WhaleSharkID [19]
R1 mAP R1 mAP R1 mAP R1 mAP

BoT [33] 58.18 ± 0.37 34.42 ± 0.80 54.92 ± 0.01 27.89 ± 0.23 83.53 ± 0.36 42.06 ± 0.70 52.71 ± 0.63 20.86 ± 0.01
AGW [56] 56.36 ± 0.37 33.00 ± 0.54 54.24 ± 0.19 28.76 ± 0.22 85.37 ± 1.67 45.65 ± 0.64 52.29 ± 1.08 20.82 ± 0.28
SBS [16] 52.27 ± 0.37 30.29 ± 0.21 52.60 ± 1.93 27.13 ± 0.57 83.63 ± 1.68 44.69 ± 0.11 46.45 ± 0.75 18.64 ± 0.40

MGN [52] 55.45 ± 0.37 31.12 ± 0.19 54.10 ± 0.89 28.02 ± 0.50 86.15 ± 0.14 46.68 ± 0.27 50.51 ± 0.55 21.24 ± 0.23
ARBase(Ours) 72.73 ± 0.64 44.34 ± 0.38 64.48 ± 0.19 37.09 ± 0.38 87.31 ± 0.76 55.67 ± 0.42 61.68 ± 0.90 29.41 ± 0.31

Table 12. Comparison of model complexity in terms of parameter
count and FLOPs.

Method Param. FLOPs Method Param. FLOPs
BoT [33] 23.5M 18.3G SBS [16] 23.6M 18.4G

AGW [56] 23.6M 18.4G MGN [52] 68.8M 42.0G
ARBase
(w/o MB) 23.5M 18.3G

ARBase
(w/ MB) 64.6M 42.0G

Table 13. Effect of training data scale. The results are averaged
over three runs.

Method Ratio of
Training IDs

HyenaID WhaleSharkID
R1 mAP R1 mAP

ARBase

25% 58.94 33.75 51.19 19.69
50% 64.55 36.68 57.61 25.12
75% 68.33 41.63 59.81 27.17

100% 73.18 44.87 62.44 29.45

6.2.4. Extended Model Analyses
Statistical Analysis. To ensure fair comparisons, we fixed
the random seeds across all experiments mentioned above,
maintaining consistent dataloader behavior across all meth-
ods. Furthermore, we repeated the comparison presented
in Table 3 using three different random seeds. The result-
ing averages and standard deviations, reported in Table 11,
further confirm the robustness and consistent performance
improvements of ARBase.

Comparison of Model Complexity. Table 12 compares
ARBase with baseline models in terms of parameter count
and FLOPs. The complexity of ARBase without Multiple
Branch is similar to that of BoT/AGW/SBS, while ARBase
with Multiple Branch is comparable to MGN. Notably, even
without Multiple Branch, ARBase still significantly outper-
forms these baselines including MGN, as demonstrated in
Table 4 and Table 7. This confirms that ARBase’s perfor-
mance gains are not due to increased model capacity.

Effect of Training Data Scale. Animal ReID datasets are
generally smaller than those in human ReID due to data
collection difficulties. In Table 13, we conduct an ablation
study on training data scale using the same evaluation proto-
col. Specifically, we randomly sample a fraction of training

Figure 6. Visualization of heatmaps. These heatmaps are obtained
by applying max pooling along the channel dimension of the fea-
tures extracted by the backbone.

identities for model optimization and report average results
over three runs. The performance comparison shows that
current datasets remain insufficient.

Feature Visualization. In Figure 6, we present the
heatmaps generated by the backbone of ARBase trained
on each benchmark, highlighting the key regions used for
the re-identification of each species. From these visual-
izations, it is evident that animal re-identification predomi-
nantly relies on body or head texture features. This obser-
vation is intuitive, as individual animals exhibit unique tex-
ture patterns, much like human fingerprints. Interestingly,
this finding is consistent with conclusions from biological
research [18], further validating the critical role of texture
features in distinguishing individual animals across species.



6.3. Discussion
6.3.1. Discussion on Novelty
Novelty (and value) come in many forms in papers8. In
our opinion, the value of a paper should be judged based
on whether it advances the field and inspires future work.
When we began addressing animal ReID, we faced three
significant challenges outlined in Section 3: (1) Lack of a
Flexible Codebase, (2) Unclear Generalization from Per-
son ReID, and (3) Necessity of a Strong Base Model. To
tackle these issues, we devoted substantial efforts to build-
ing OpenAnimals, revisiting person ReID paradigms, and
developing ARBase. We believe these contributions can
serve as valuable resources for researchers in this field,
sparing them significant time and effort while fostering
progress.

6.3.2. Discussion on Writing
Our manuscript is not organized in the same manner as
most regular CVPR papers. The organization draws inspi-
ration from impactful works [10, 33] which adopt similar
approaches to structuring their contributions. Animal ReID
is an emerging field, and it remains unclear which tech-
niques and methodologies from person ReID can be effec-
tively generalized to this domain. This lack of clarity poses
significant challenges to the development of animal ReID
and directly motivates our work.

6.3.3. Discussion on Future Work
Our study makes a meaningful contribution towards ad-
vancing animal re-identification, yet this task warrants fur-
ther exploration. Here, we identify some promising direc-
tions for future research:
(a) Attribute-assisted Animal Re-Identification: Se-

mantic attributes, such as gender and age, are use-
ful auxiliary tools for person re-identification. For
animal re-identification, summarizing long-term at-
tributes could enhance identity recognition.

(b) Video-based Animal Re-Identification: Due to the
challenges associated with data collection and anno-
tation, current benchmarks for animal re-identification
are primarily image-based. Videos, however, provide
richer information and could be more promising for ac-
curate animal re-identification.

(c) Generalizable Animal Re-Identification: Animal re-
identification involves various species, making it valu-
able to develop a generalized model capable of rec-
ognizing multiple species. This is particularly fea-
sible with the emergence of Large Language Models
(LLMs) that encapsulate rich knowledge across differ-
ent species.

8https://medium.com/@black_51980/novelty- in-
science-8f1fd1a0a143 by Michael Black, Director at the Max
Planck Institute for Intelligent Systems.
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