OpenM3D: Open Vocabulary Multi-view Indoor 3D Object Detection
without Human Annotations

Supplementary Material

1. Visualization

This section showcases visualizations of 3D pseudo boxes
generated by our method, along with additional qualitative
results from OpenM3D.

Visualize 3D Pseudo Boxes. The localization capability of
our pseudo boxes has been validated in Table 1, 2 of the main
paper. In Fig. 1, we show some examples of our 3D pseudo
boxes and their corresponding 3D segmentations. To clearly
present our pseudo boxes, we organize them based on two
distinct ranges—small and medium—using the volumes of
the boxes. Moreover, our 3D pseudo boxes can accurately lo-
cate novel objects, as illustrated in Fig. 2, in addition to those
annotated in the ground truth. These results validate the lo-
calization capability of our generated class-agnostic pseudo
boxes for various potential objects in the scene, paving the
way for open-vocabulary 3D object detection.

More Qualitative Results. We present more qualitative
results of open-vocabulary 3D object detection obtained by
OpenM3D in Fig. 3. Some detection results for tail and
novel objects are also shown in Fig. 4. With general prompts
used in CLIP, OpenM3D demonstrates consistent 3D de-
tections across multiple classes. This strongly showcases
OpenM3D’s capability in open-vocabulary 3D object detec-
tion.

2. Experiment Details

2.1. Implementation Details

Frame Selection for Generating 2D Segments. To achieve
fine-grained SAM [3] results for each frame, we aim to
automatically choose frames with distinct outlines as SAM
inputs for improving segmentation quality. As a result, we
utilize Laplacian calculations to determine sharpness as the
basis for selecting frames. For every scene in ScanNet200
and ARKitScenes, we divide all frames into intervals based
on chronological order. Within each interval, we select the
frame with the highest sharpness value. This process was
repeated until 300 frames were chosen, iterating through the
remaining frames in each round.

2D Segments Filtering and Refinement. When generat-
ing 2D segments from an image, we noticed that SAM may
generate excessively small segments. Such problematic seg-

ments confuse the CLIP image encoder, resulting in poor
embedding quality. Multiple small segments may map to the
same voxel and further worsen the open-vocabulary classi-
fication of OpenM3D. We thus add preprocessing steps to
exclude such patches: We set a minimum bounding-box size
of 30 pixels, and a 0.02 ratio threshold of observed 3D points
within each segment’s bounding box.

Given that CLIP is trained using real-world images, our
approach involves incorporating the surrounding regions of
the bounding box when calculating the CLIP embedding for
each 2D segment, to provide a scenario similar to real-world
images. In addition to the image patch tightly cropped by the
bounding box around each segment, we include patches from
areas surrounding the segment with dimensions of 110% and
120% relative to the size of the bounding box. In OV-3DET,
Lu et al. use a predefined vocabulary with 364 categories
for pseudo box generation, we follow the same and use
the vocabulary to improve on CLIP segment embeddings.
Specifically, for each segment, we compare the embedding
of the segment to the text embedding of all categories, and
use the embedding of the closest category. Please refer to
Alg. 1 for the pseudo code of 3D pseudo box generation.
Voxel and 3D Volume. The feature volume measures 6.4
X 6.4 x 2.56 meters, with a voxel size of 0.16 meters in all
three dimensions.

2.2. 3D Pseudo Box

3D Pseudo Box on ScanNetv2. The evaluation result
for ScanNetv2 [2] is presented in Table 1. Similar to the
performance on ScanNet200, our method consistently out-
performs OV-3DET [6] and SAM3D [9] in terms of precision
at IToU@0.25 and IoU@0.50, while maintaining a compara-
ble recall with SAM3D. This validates the contribution of
the graph embedding-based clustering strategy, which simul-
taneously considers the 2D segmentation results across all
frames. This approach helps mitigate the impact of segmen-
tation errors from individual frames.

3D Pseudo Box in Different Subset on ScanNet200. In
Table 2, we showcase the detailed 3D pseudo box evalu-
ation in ScanNet200 for different subsets (head, common,
tail). The evaluation computed overall precision without
considering classes, given our pseudo boxes lack class infor-
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Figure 1. Visualize Pseudo Boxes of OpenM3D on ScanNet200. We visualize our 3D pseudo boxes using two different volume sizes
(small and medium). In this visualization, cyan represents false positives, while magenta represents true positives matching the GT boxes at
IoU@0.25.
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Figure 2. Localizing Novel Object with Pseudo Box on ScanNet200.

Ground Truth OpenM3D Ground Truth Text Prompt

a photo of many { 3

'a photo of a nice {door}.'

‘Classify this image, is it an large
indoor {1/}

'Label this image with the indoor
{pillow}.’

a photo of a my {backpack}.'

a photo of a clean { 3

'Identify and label the indoor {door}
in this image.’

'Classify this image as depicting an
large indoor { 75

Figure 3. More Qualitative Results of OpenM3D on ScanNet200. We show general text prompts used in the ImageNet dataset, as well as
prompts from specific text.
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Figure 4. Novel and tail predictions in OpenM3D.

Algorithm 1: 3D Pseudo Box Generation

Input :RGB images, corresponding pose (R, t),
intrinsic K, and depth map D

Output :3D Pseudo Boxes b°°
1 for each RGB image I do
2 | n3P « Segment2D(I)
3 n?D « Backproject(n;”, (R, t), K, D) ;

// Eq.
4 end
5 Nodes := {n’"}
6 V < Voxelize(Nodes) ; // Voxelize based on 3D
coordinates of each node

7 for voxel in V do

8 for any pair (njD ,n3P) in voxel do

9 ‘ eji = edge(n;D,niD) ; // Eq.
10 end
11 end

12 Edges = {e;;}

13 Embedding < GraphEmbed(GenGraph(Nodes,
FEdges))

14 C « Clustering(Embedding) ; // Give each node
a clustered group

15 for C, in C do

16 | i ={n" €Ce}: // Collect partial
segments in the same cluster ¢

17 bZD = AxisAlignedBox(ﬁzD)

18 end

19 b0 = {b}P}

mation. While calculating precision in a certain subset, such
as “head,” only ground truth boxes in head classes are con-
sidered. This may result in a lower head precision than the
overall precision, as pseudo boxes overlapping with ground
truth common/tail classes contribute to false positives in the
head precision calculation.

Moreover, we utilize an advanced image segmentation
method, CropFormer [4], to acquire more accurate 3D
pseudo boxes. CropFormer’s improved object-wise under-

Table 1. 3D Pseudo Box Evaluation on ScanNetv2. Our 3D
pseudo boxes demonstrate higher quality compared to OV-3DET
and SAM3D in terms of precision at oU@0.25 and IoU@0.50.

Precision (%) Recall (%)
Method
@0.25 @0.50 @0.25 @0.50
OV-3DET [6] 4.28 0.20 53.14 25.90
SAM3D [9] 7.39 4.94 70.02 46.76
Ours w/o MSR  15.81 7.52 72.62 34.56
Ours 17.11 991 73.84 42.80

Table 2. Detailed 3D Pseudo Box Evaluation with different
2D segmentation on ScanNet200. We perform a comprehensive
evaluation across different subsets of ScanNet200. Additionally,
we leverage various 2D segmentation sources to generate pseudo
boxes. The use of different 2D segmentation sources in our method
results in 3D pseudo boxes of varying quality. For example, when
CropFormer is applied, these boxes outperform all other methods
in terms of precision and recall at IoU@0.25 and IoU@0.50.

‘ ‘ Precision (%) Recall (%)
Method 2DSeg Classes
| | @025 @050 @025 @0.50
| | overall 1162 440 2113 799
OV-3DET [6] Detic [10] head 959 368 2039  7.82
common 1.95 0.74 26.12 9.95
tail 106 029 2422 677
| | overall 1448  9.05 5770  36.07
SAM3D [9] SAM [3] head 1254 768 5844 3581
common 1.86 1.33 56.97  40.67
tail 087 059 4472 30.27
| | overall ~27.09 1198 5243  23.18
Ours w/o MSR SAM [3] head 2426 1067 5490 24.14
common  2.99 1.40 4515 21.23
tail 086 036 2065 8.8
| overall 3207 1814 5830  32.99
Ours SAM [3] head 2855 1600  60.68  34.01
common 3.66 2.20 51.88  31.68
tail 115 069 2630 2268
| overall 3558 2272 6260  39.97
Ours CropFormer [4] | head 3167 1997 6514  41.08
common  3.94 2.75 55.07 3853
tail 131 094 2977 2133

standing reduces the risk of over-segmentation, enhancing
the consistency in 2D views. This improvement benefits our
3D pseudo box generation method, resulting in less noisy 3D
segments and more precise refinements. Our method priori-
tizes pseudo box precision over recall for detector training,
resulting in higher precision at loU@0.25 and IoU@0.5
compared to OV-3DET and SAM3D in each subset. This su-
perior quality is evident in our boxes generated based on both
SAM and CropFormer. They also achieve significantly better
recall than OV-3DET and remain comparable to SAM3D in
most settings.



2.3. Baseline Using *3R methods

Recent 3R methods such as MV-Dust3R [7] and VGGT [8]
enable 3D scene reconstruction from RGB images and
camera poses without requiring depth, aligning well with
OpenM3D’s inference setting. To establish a baseline, we
implemented a multi-stage pipeline that combines VGGT
for 3D reconstruction and OVIR-3D [5] for open-vocabulary
instance segmentation on ScanNet200. All components were
executed using official implementations and default settings,
with 3D boxes computed from axis-aligned segment bounds.

This pipeline incurs substantial computational over-
head—particularly during 2D-3D fusion—resulting in an
inference time of 300 seconds per scene, compared to 0.3
seconds for OpenM3D. In terms of accuracy, it achieved
only 5.97% AP@25 (class-agnostic), significantly lower
than OpenM3D’s 26.92%. We also observed that VGGT
often fails to reconstruct fine-grained indoor geometry (see
Fig. 5), which is crucial for accurate 2D-3D matching in
instance segmentation—a limitation also noted in the OVIR-
3D paper.

Overall, this reconstruction-based pipeline is substantially
less effective than OpenM3D in both accuracy and efficiency
for open-vocabulary 3D object detection.

GT VGGT OVIR-3D

Figure 5. 3R baseline qualitative result. Comparison between
(left) ground-truth ScanNet scene, (middle) VGGT 3D reconstruc-
tion using only RGB images and poses, and (right) OVIR-3D seg-
mentation result on the VGGT output. The reconstruction lacks
fine-grained indoor geometry, resulting in inaccurate 2D-3D match-
ing and degraded segmentation quality.

2.4. Inference Efficiency

As shown in Table 3. OpenM3D achieves the fastest infer-
ence time of 0.3 seconds per scene, using only multi-view
RGB images, and significantly outperforms baselines such
as OV-3DET (5 s), S2D (2.1 s), and S2D with depth estima-
tion (81 s). Unlike others, it avoids costly CLIP inference
and depth prediction, making it highly suitable for real-time
3D detection.

Table 3. Inference time comparison on ScanNet200 on a V100
GPU. OpenM3D is over 16x faster than OV-3DET and 270x faster
than the depth-estimated S2D baseline.
Method OV-3DET S2D S2D Depth Est.  Ours
Inference time (s) 5 2.1 81 0.3

Table 4. Results of OpenM3D trained with different CLIP
encoders on ScanNet200.

CLIP Encoder | mAP@25 (%) mAR@25 (%)

ViT-L/14 4.23 15.12
ViT-B/16 4.16 15.50
ViT-B/32 4.02 14.74

2.5. Transferability of Pretrained Model

OpenM3D does not rely on predefined ‘seen’ categories or
3D annotations during training, making it naturally OV - all
categories are essentially novel. OpenM3D demonstrates
strong performance across head, common, and tail classes
in ScanNet200 (see Fig. 4), highlighting its ability to handle
rare or unseen classes.

2.6. Ablation Study

CLIP Visual Encoders. We aligned our voxel feature to the
pre-trained CLIP feature extracted by the ViT-L/14 image en-
coder during training. Furthermore, we showcase alternative
results employing various other CLIP image encoders in this
section. As outlined in Table 4, the use of different CLIP im-
age encoders exhibited negligible impact on both evaluation
metrics, namely mAP@25 and mAR@25. This observa-
tion emphasizes the robust open-vocabulary classification
capability of our method, OpenM3D.

3D Detection with Pseudo Box using CropFormer. When
deploying better segmentation models, e.g., CropFormer [4],
we can generate more accurate pseudo boxes as detailed in
Table 2. The improvement on 2D segmentation benefits our
3D pseudo box generation method on 3D segments refine-
ments. Trained with these boxes, OpenM3D demonstrates
a notable improvement of 12.5% in mAP @25, rising from
4.23% to 4.76% on ScanNet200, as shown in Table 5. This
highlights the potential of our 3D pseudo boxes on better 2D
segmentation. Note that in ARKitScenes, given the sparse
point cloud, improving 2D segmentation using CropFormer
alone has not significantly improved 3D box metric perfor-
mance.

3D Detection on ScanNetv2. We reported the results of our
model evaluated on the common 18 classes in ScanNetv2 [2]
in Table 6. OpenM3D trained with our pseudo boxes consis-
tently outperforms the models trained with SAM3D and OV-
3DET on all metrics, including AP@25, AP@50, AR@25,
and AR@50. Notably, OpenM3D achieved over 12% and
20% improvements in AP@25 and AR@50, respectively,
compared to OV-3DET. Larger gaps were observed, with
7.34% vs. 2.87% in AP@50 and 20.94% vs. 9.27% in
AR@50. The substantial improvements brought by our
method on AP@50 and AR @50 underscore the limitations
associated with solely relying on single-view depth maps
and images for bounding box generation. The notable im-
provements of our pseudo boxes over SAM3D in AP@25



Table 5. 3D Object Detection on ScanNet200. Our pseudo boxes
with CropFormer improve upon SAM.

Trained Box

Vehod DSes mAP@25(%) mAR@25(%)
OV-3DET [6] Detic [10] 3.13 10.83
SAM3D [9] SAM [3] 3.92 13.33
SAM [3] 423 15.12
Ours CropFormer [4] 4.76 14.62

Table 6. 3D Object Detection on ScanNetv2. OpenM3D out-
performs our method trained on the boxes from OV-3DET and
SAM3D.

Method ‘ Trained Box ‘ AP@25 (%) AR@25(%) AP@50(%) AR@50 (%)
OV-3DET [6] 17.65 40.37 2.87 9.27
OpenM3D SAM3D [9] 16.69 49.39 5.18 19.33
Ours 19.76 50.40 7.34 20.94

and AP@50 metrics showcase the efficacy of our graph
embedding-based pseudo boxes. Note that the train/evaluate
split applied in [1, 6] differs from the official split by Scan-
Netv2 [2], making direct comparisons with their reported
results challenging.

3. Limitation

The gap between class-agnostic and OV 3D detection im-
plies that the pre-trained CLIP feature can be improved in
classifying many semantically similar household objects. We
leave this as a future direction.
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