Adaptive Dual Uncertainty Optimization: Boosting Monocular 3D
Object Detection under Test-Time Shifts

— Appendix———

The structure of Appendix is as follows:

* Appendix A contains all missing proofs in the main manuscript.

* Appendix B presents further experimental results on more corruption levels.

* Appendix C provides additional ablation studies to validate the robustness and efficiency of our method.
* Appendix D details the compared methods, model architecture, and datasets used for comparison.

A. Theoretical Proof

Below, we provide detailed proofs of the theoretical results presented in Sec. 5.1 of the main paper.

Notation. First, we recall the notation that we used in the main paper as well as this appendix: x denotes an inputting
test image and y denotes the one-hot coding of the ground-truth label. hg denotes the model with its parameter set § and
h 2 hg(x). s £ eM 4 ... + eh« is the sum over the exponential outputs of the model and c is the number of classes.
p = softmax(h) is the normalized probability over the classes. diag(-) denotes the diagonal matrix and I denotes the
identity matrix. We define the following two functions: f(h) = alogs, g(h) = ah + a((1 — p)?” — 1) logp.

A.1. Legendre-Fenchel Structure

In this subsection, we demonstrate the equivalence of the vanilla focal loss with its Legendre-Fenchel structure.
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Therefore, the focal loss can be formulated as a classical convex conjugate structure, allowing for further analysis in the
conjugate optimization framework.

A.2. Problem Reconstruction.

In this section, we demonstrate the invertibility of function g to ensure the existence of a conjugate function and further
reformulate the optimization problem into conjugate relationships. by the inverse function theorem, the local invertibility of
g is guaranteed if its Jacobian is non-singular. For simplicity, we demonstrate the positive definiteness of the Jacobian under
the default setting v = 2:



Step 1: Jacobian of g. Taking the gradient of g with respect to h, we obtain:
Vg = I + diag(p — 2 — 2(1 — p)logp) - (diag(p) —pp'):=I+ D - H. (17

where D = diag(p — 2 — 2(1 — p) log p) and H = diag(p) —pp .
Step 2: Positive Semidefiniteness of [. For any vector v € R, the quadratic form of H is:

c c 2
v Hv = pr? — (Zpivz) (18)
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Let V be a random variable that takes the value v; with probability p;. The quadratic form simplifies to:
v Hv =E [V?] — (E[V])? = Var(V) (19)
Since variance is always non-negative, we have:
vHv >0 VYveRY (20)

Thus, H is positive semi-definite. Furthermore, using Gershgorin’s circle theorem, all eigenvalues of H satisfy:

0<AH) <max{2p;(1—p;)} < 201
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where 2p; (1 — p;) attains its maximum % when p; = %
Step 3: Bounding the Eigenvalues of V; g. Since D is diagonal, the matrix D - H can be seen as a row-scaled version of

H. And the element of H follows:
Di; =p; —2—2(1 —p;)logp;. (22)

Numerical analysis of the function ¢(p;) = p; — 2 — 2(1 — p;) log p; shows D;;> — 2 for p; € (0,1). Therefore, the
eigenvalues of Vg satisfy:

A (th) >1+ Amin(D) : Amin(H). (23)
Since Apin(H) > 0 and D;;> — 2, we can obtain a tighter bound:
1
/\(th)21—2-)\(H)21—2-§:0, (24)

Step 4: Conclusion. As all eigenvalues of Vj, g are non-negative, the Jacobian is positive semidefinite. In particular, as long
as p is not degenerate (i.e., no prediction has probability exactly O or 1), H is full rank on its subspace, ensuring that Vg is
non-singular in a neighborhood of h. Thus, by the inverse function theorem, g is locally invertible.

This invertibility guarantees the existence of a conjugate function f*, which equals to the minimization value of the
objective:

min{f(h) -y g(h)} = Z:mgi(r}l){f og ' (2) =y 2} = f*(y). (25)

Under the common assumption that the representation h pre-trained from the large source dataset is already close to a local
optimal solution hg, we can convert the problem into the following conjugate relationships:

fog™t(z) =y z2=f*(y), Vo(fog™) =v. (26)
A.3. Conjugate Focal Loss

In this subsection, we need to derive the estimation of y from the conjugate conditions in Equ. 26. For the derivative of g, we
differentiate the two summation components separately:

g(h) =ah+ad(p), with ¢(p)=((1-p)” —1)- logp. @27
For the first part, we have V,h = I. For the second part, we utilize the chain rule to derive the following format:

Vg = Vpd - Vip. (28)



We calculate the V¢ as follows:

(1-p -1

Vp(((l -p)7 1) logp) = 7 (1—p)" " logp. 29)
We calculate the V,p as follows:
Vip = diag(p) —pp" - (30)
Thus, the Jacobian of g is given by
1—p) -1 _ )
Viag(h) = a1+ (220 - o1 = gy togp) - diag() — )] a1
For the composite function f o ¢!, the chain rule gives
_ -1
Vo(fog ) (z) = Vuf(h) (Vag(h)) (32)
Evaluating at hq (with p = softmax(hg)) leads to
-1 1-p)7 -1 _ i -1
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And we utilize the Taylor’s Formula to approximate the value (neglecting higher-order terms of p):
Yy -1) . -
(1-p)"=1-9p+ %dlag(ppT), (1—=p) Hlogp = (1~ (y—1)p)logp. (34)
After algebraic manipulation (and neglecting higher-order terms in p and log p), we obtain
T . -t
Yo ~ (I + 7((1 —logp)pp’ —logp dlag(p))> p. 35)
Thus, by applying the chain rule and approximating the Jacobian of g to higher order, we obtain
\Y% og ! ) -1
Yo = % ~ (I +7(1—logp)pp" — ylogp dlag(p)) p- (36)
hZ -
z=g(ho)
Finally, we substitute this estimation into Equ. 26, yielding Conjugate Focal Loss:
Ler(x) = f(h) = yg 9(h) = —a(l = p) (I + (1 —logp) - p'p — ~ylogp - diag(p))~'plog p. 37

B. Further Experiments

In this section, we broaden our investigation by evaluating our method across a variety of shift severity levels. To this end,
we conduct experiments on corruption scenarios with shift level 1, 3, 5. These experiments allow us to thoroughly examine
the robustness of our approach under different severity levels of distribution shifts.

B.1. Different Severity Level Corruption

We further provide more discussions surrounding high-severity data corruptions (i.e. 3 and 1) based on the experimental
results shown in Tab. 5&6, which clearly gives additional observations: 1) With the escalation of severity level, the source
models suffer a larger performance decline within various corruptions. For instance, the pre-trained models of MonoFlex and
MonoGround achieve obvious performance drop from level 1 to level 3, which significantly heightens the challenge for test-
time adaptation. 2) Existing TTA methods struggle to recover performance under such extreme corruptions, highlighting the
limitations of conventional uncertainty optimization approaches. 3) Despite these challenges, our DUO framework consis-
tently achieves the best average performance across all corruption types. This robust performance demonstrates that our dual
uncertainty optimization framework effectively stabilizes both the semantic classification and spatial perception branches,
providing reliable adaptation even under different shift levels.



C. Additional Ablation Study

In Sec. 6.3 of the main paper, we provide a comprehensive analysis of each component’s effectiveness and their comple-
mentary interactions. In this section, we extend our analysis by examining the sensitivity of key parameters and comparing
running times, offering further insights into the robustness and efficiency of our method.

C.1. Hyperparameter Robustness

Our method involves two key hyperparameters: the coefficient A, which determines the trade-off of the semantic and geomet-
ric uncertainty optimization, and the coefficient c, which controls the weighting scale in conjugate focal loss. We conduct
ablation experiments on these two key coefficients independently:

As shown in Fig. 7(a), the different strengths of geometric constant yields stable performance gains. However, when A
exceeds the optimal range (e.g., 1.1), the model tends to over-prioritize geometric consistency over uncertainty optimization,
leading to worse performance. To balance the effects of two components in our method, we set A to 0.7 by default. In Fig.
7(b), we observe that the weighting coefficient o consistently outperforms prior SOTA methods, demonstrating the robustness
of our Conjugate Focal Loss weighting scheme. Empirically, we set « to 4 by default.

Notably, the default choice of o and « not only yields strong empirical performance but also aligns with the standard
settings used in vanilla focal loss during source training. This compatibility echoes our theoretical analysis in Sec.5.1,
suggesting that hyperparameters can remain unchanged from the source phase. Such consistency removes the need for
extensive hyperparameter tuning, significantly improving the efficiency and practicality of our adaptation strategy.

(a) Performance under Different A (b) Performance under Different

24 24
23 23 A
N\
f/ N\
$ $ o
< < / N\
S22 222 / N\
o o “a
< < P’ N
Prior SOTA or S
21 21
20 20
0.1 0.3 0.5 0.7 0.9 11 A 2 3 4 5 6 7 a

Figure 7. (a) Performance with varying strengths A of the normal field constraint. (b) Performance with different weighting scare « of the
conjugate focal loss.

Table 5. Comparisons with state-of-the-art methods on the KITTI-C validation set (severity level 3) in Car category. We highlight the best
and second results with bold and underline respectively.

Noise Blur Weather Digital
Method Reference Gauss. Shot Impul. | Defoc. Glass Motion | Snow Frost Fog Brit. |Contr. Pixel Sat. Ave
MonoFlex CVPR’21 | 0.63 049 0.63 | 1.09 26.10 0.71 |14.21 15.88 10.16 27.88| 4.41 11.61 39.25|11.77
o TENT ICLR’21 | 17.99 26.99 2229 | 13.46 35.73 9.36 [32.52 30.99 38.13 40.67|39.28 34.46 43.37|29.63
o EATA ICML’22 | 1821 27.52 22.83 | 14.86 36.01 13.98 |33.11 31.45 38.35 40.62|39.55 35.23 43.44|30.39
e DeYO ICLR24 | 18.36 28.49 23.15 | 15.04 36.44 16.38 |33.67 31.32 38.57 40.75|39.93 35.81 43.58|30.89
e MonoTTA | ECCV’24 | 19.64 2837 24.45 | 17.79 3591 17.20 |34.11 31.78 39.45 40.83|40.74 36.27 43.46|31.54
e Ours This paper | 21.18 29.43 25.43 19.09 36.85 18.88 35.32 31.96 39.77 41.64 41.71 36.73 43.93 | 32.46
MonoGround | CVPR’22 | 0.51 052 0.86 | 247 2571 035 [10.68 9.99 559 3231| 0.81 14.94 36.06|10.83
e TENT ICLR’21 | 20.01 31.16 25.56 | 17.72 38.63 10.47 |33.58 30.83 38.06 42.78 | 40.11 39.56 45.49|31.84
o EATA ICML’22 | 20.36 31.84 26.63 | 18.39 38.77 14.21 |34.03 31.08 37.93 42.32|40.32 39.57 45.30|32.37
e DeYO ICLR’24 | 20.80 3231 27.32 | 19.33 38.63 15.37 |34.58 31.43 33.95 42.97 | 40.33 39.83 45.20|32.47
e MonoTTA| ECCV’24 | 22.10 33.93 28.35 | 22.49 39.88 16.64 |32.71 32.42 39.93 42.69|40.61 39.92 44.85|33.58
e Ours This paperX | 23.65 34.79 29.23 23.08 40.63 18.66 34.75 33.38 40.39 42.97 41.64 40.53 44.91)|34.51




Table 6. Comparisons with state-of-the-art methods on the KITTI-C validation set (severity level 1) in Car category. We highlight the best
and second results with bold and underline respectively.

Noise Blur Weather Digital
Gauss. Shot Impul. | Defoc. Glass Motion | Snow Frost Fog Brit. | Contr. Pixel Sat.

MonoFlex | CVPR’21 | 12.97 20.42 15.02 | 20.37 36.51 11.61 |32.26 30.61 19.69 45.33|20.01 29.09 42.4425.87
o TENT ICLR’21 | 29.84 38.55 34.54 | 34.93 40.52 25.08 |39.68 40.53 40.30 44.37|44.04 41.10 43.92|38.26
e EATA ICML’22 | 30.13 38.69 34.77 | 35.43 40.16 27.93 |39.85 40.38 40.60 44.81|44.43 41.39 44.30|38.68
e DeYO ICLR’24 | 30.58 38.82 34.93 | 36.04 41.00 28.64 [39.96 40.51 40.62 44.79|44.46 41.48 44.90|38.98
e MonoTTA | ECCV’24 | 32.34 39.05 35.68 | 36.58 40.69 30.25 |39.70 40.01 41.22 44.76 | 44.88 41.91 44.20|39.33
e Ours This paper | 32.28 39.42 36.78 | 36.87 40.91 31.33 |39.88 40.71 41.23 44.90 | 44.41 42.47 44.44 39.66

MonoGround | CVPR’22 | 13.05 22.05 19.41 | 20.75 38.72 8.40 |30.65 27.66 14.56 46.22|14.95 33.40 36.29|25.08
o TENT ICLR’21 | 34.94 4276 37.93 | 37.79 44.95 25.15 |40.67 42.77 41.26 47.05|45.12 43.73 46.56|40.82
e EATA ICML’22 | 35.36 42.47 38.85| 38.24 4487 26.44 |40.64 42.61 41.65 46.94|45.18 43.71 46.54|41.04
e DeYO ICLR’24 | 35.88 42.07 39.86 | 38.51 44.81 28.01 [40.60 42.49 41.95 46.83|45.25 43.67 46.54|41.27
e MonoTTA | ECCV’24 | 37.05 42.86 39.52 | 39.25 44.59 32.66 |40.54 42.47 42.13 45.95|44.98 43.38 46.15|41.66
e Ours This paper | 37.25 43.31 40.21 | 39.80 45.30 34.16 | 41.39 42.80 42.84 46.61|45.93 43.80 46.66 42.31

Method Reference Avg

Table 7. Comparisons with state-of-the-art methods on the KITTI-C validation set (severity level 5) with MonoGround. We highlight the
best and second results with bold and underline respectively.

Car Category

Noise Blur Weather Digital
Gauss. Shot Impul.|Defoc. Glass Motion | Snow Frost Fog Brit. |Contr. Pixel Sat.
MonoGround | CVPR’22 | 0.00 0.00 0.00 | 0.00 11.63 0.29 | 1.95 6.59 3.14 19.25| 0.00 4.66 3.74 | 3.94
e TENT ICLR’21 | 6.82 14.81 8.21 | 488 2838 2.65 |23.92 28.08 33.06 36.70|20.22 30.63 33.27(20.90
e EATA ICML22 | 7.12 1526 8.81 | 5.09 29.08 2.52 |24.18 28.03 33.43 36.78|21.61 30.50 33.42|21.22
e DeYO ICLR24 | 7.35 1572 938 | 574 30.01 299 |25.03 28.55 34.32 37.31|23.41 30.99 34.16(21.92
e MonoTTA | ECCV’24 | 7.88 16.73 10.35 | 597 31.19 3.06 |25.24 28.99 34.85 37.82|25.00 31.61 34.79|22.57
e Ours This paper| 9.72 18.88 12.74 | 7.24 33.02 5.24 |28.50 30.73 37.27 39.40 | 28.34 33.22 37.24 24.73
Pedestrian Category

Noise Blur Weather Digital
Gauss. Shot Impul.|Defoc. Glass Motion | Snow Frost Fog Brit. |Contr. Pixel Sat.
MonoGround | CVPR’22 | 0.00 0.00 0.00 | 0.00 1476 0.00 | 0.28 0.74 0.68 4.63 | 0.00 0.34 1.80 | 1.79
e TENT ICLR’21 | 147 291 1.01 | 1.19 1519 0.66 | 698 10.44 14.95 17.49|11.10 10.72 8.72 | 7.91
o EATA ICML22 | 1.85 286 1.05 | 1.31 14.02 0.79 | 741 10.08 14.72 17.57|11.31 11.20 9.38 | 7.97
e DeYO ICLR’24 | 225 281 1.08 | 1.46 1328 092 | 7.75 9.74 14.45 17.64|11.49 11.68 9.99 | 8.04
e MonoTTA | ECCV’24 | 240 474 152 | 1.60 1631 1.09 | 895 11.06 14.72 17.96|10.62 12.39 12.11| 8.88

Method Reference Avg

Method Reference Avg

e Ours This paper | 2.26 5.03 1.85 | 2.24 16.26 2.29 |10.44 12.37 15.50 18.89| 12.59 12.35 12.95 9.62
Cyclist Category
Noise Blur Weather Digital

Method Reference Avg

Gauss. Shot Impul.|Defoc. Glass Motion | Snow Frost Fog Brit. |Contr. Pixel Sat.

MonoGround | CVPR’22 | 0.00 0.00 0.00 | 0.00 047 0.00 |0.10 120 0.21 3.85| 0.00 0.76 0.19 | 0.52
e TENT ICLR’21 | 1.77 0.14 0.04 | 0.07 292 031 | 192 270 690 8.14 | 1.08 1.51 2.71 |2.32
o EATA ICML’22 | 0.88 0.13 005 | 0.06 294 040 |2.03 281 691 836 | 132 152 298|234
e DeYO ICLR’24 | 0.00 0.12 0.07 | 0.06 296 049 | 213 293 691 858 | 1.57 154 3.25|235
e MonoTTA | ECCV’24 | 0.04 0.10 0.04 | 0.15 359 0.52 |251 396 845 7.80 | 3.00 290 3.61 |2.82
e Ours This paper| 0.05 0.14 0.07 | 024 4.01 0.70 | 2.67 420 8.79 822 | 391 255 3.72 3.02

C.2. Running Time Comparison

In our experiments, we have demonstrated the effectiveness of DUO in various scenarios. In this subsection, we focus on the
computational efficiency of DUO. Although our method relies on dual-branch optimization, the computation of the geometric
constraint with efficient operators incurs only a slight time cost. As shown in Table 8, DUO’s running time is less than half
that of DeYO, which relies heavily on data augmentation to optimize the uncertainty. Moreover, DUO’s adaptation efficiency
exceeds that of MonoTTA, which only optimizes semantic uncertainty without addressing geometric uncertainty. Notably,



processing 1k images with DUO adds only an extra 6 seconds compared to inference alone, underscoring the high efficiency
of our dual-branch optimization framework.

Table 8. Running time comparison of various methods. We assess TTA approaches for processing 1k images in Gaussian corruption type,
using a single Nvidia RTX 4090 GPU.

Metrics Source Model TENT EATA DeYO MonoTTA | Ours
Running Time 26s 31s 29s 87s 33s 32s

D. More Implementation Details

D.1. Baseline Methods

We compare our DUO with several state-of-the-art methods. TENT [46] reduces the entropy of test samples to guide model
updates, prompting the model to generate more confident predictions. Building on this, EATA [36] incorporates a sample
selection mechanism based on low uncertainty to specifically minimize entropy for the most reliable samples, thereby further
reducing semantic uncertainty. DeYO [22] prioritizes samples with dominant shape information and employs a dual semantic
uncertainty criterion to identify reliable samples for adaptation. MonoTTA [24] introduces a negative regularization term on
low-score objects, leveraging their negative class information to reduce uncertainty.

D.2. Detailed Model Architecture

Our framework is built on a widely-adopted multi-branch architecture for monocular 3D object detection, where separate
branches predict various object properties to simultaneously achieve recognition and spatial localization. In 3D detection,
accurate depth estimation is a critical factor that significantly influences overall performance [32]. To enhance depth predic-
tion, many existing models adopt a multi-head strategy that integrates diverse depth estimates to reduce the individual bias.
For example, MonoFlex [55] combines direct regression with multiple keypoint estimation; MonoGround leverages ground
plane priors for refined depth predictions [40]; and MonoCD exploits the complementary strengths of multiple prediction
heads [53].

To effectively integrate the multi-head predictions, these models includes an uncertainty estimation branch that quantifies
the reliability of each depth prediction. The final depth estimation is computed as an uncertainty-weighted average, as shown

in the following formulation:
- Z; - 1
s = (32)(22). o)

i=1 =1
where the o; is the uncertainty of the corresponding depth estimation and n is the number of depth heads. In the main paper,

we use the average of the log o; as the depth uncertainty metric.
Furthermore, the uncertainty regression loss for the entire depth branch is designed as:

Laep =Y ["ZJZ' +log (a,»)] : (39)

where the z* is the ground-truth depth.

For our TTA setting, we attempt to utilize the weighted average z,, ¢ as a pseudo-label to optimize this loss, directly
optimizing the depth uncertainties. However, this approach can lead to model collapse—a phenomenon we analyze in detail
in Sec. 4 of the main paper.

For Monoflex [55] and MonoGround [40], we follow their original settings by using a randomly generated seed. Both
Monoflex and MonoGround employ the same modified DLA-34 [54] as their backbone network, with input resolutions of
384 x 1280 for the KITTI-C and 928 x 1600 for nuScenes, respectively.

D.3. More Details on Dataset

KITTI-C Dataset. We follow the protocol from [24, 55] to partition the KITTI dataset into a training set (3712 images)
and a validation set (3769 images) for model training and adaptation, respectively. For evaluation, we employ the KITTI-
C version, which applies 13 distinct corruptions to the validation set—namely, Gaussian noise, shot noise, impulse noise,



defocus blur, glass blur, motion blur, snow, frost, fog, brightness, contrast, pixelation, and saturation [14], as shown in Fig.
8. Each corruption is further divided into five severity levels, with higher levels indicating more extreme perturbations and
distribution shifts.

Motioﬁ Blur

Contrast Saturate

Figure 8. An illustration of 13 distinct types of corruptions in the severity level 3 of the KITTI-C dataset.

nuScenes Dataset. For the four real-world scenarios in the nuScenes dataset, we first extract all front-view images and
convert them to KITTI format using the official devkit [5]. Following [29], we partition these images into Daytime, Night,
Sunny, and Rainy scenarios based on their scene descriptions. For each scenario, we train our model on the training split
and evaluate its performance on the validation split (the number of images per scenario is shown in Fig. 9). Since the Night
scenario contains fewer than 4k images with fewer objects (e.g., pedestrians), we report results only for the Car category.

. Daytime (24.7k/5.4k, train/test) ) Night (3.3k/0.6k, train/test)

& Sunny (22.5k/4.9k, train/test) ® Rainy (5.5k/1.1k, train/test)

Figure 9. An illustration of the Daytime, Night, Sunny, and Rainy scenarios of the nuScenes dataset.
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