
Appendix

A. Supplementary Details
A.1. Additional Details of Task-specific Adaptation
For the details of three parallel operation branches in OAF
module: (i) HPF branch: Conditioned by the operand
Ph ∈ R

N
H×W ×K2×H×W predicted by the hyper-network

ϕθh(·), this branch employs spatially-variant convolution
on the input feature X ∈ R

N
H×W ×D×H×W to obtain

the resultant feature X̂h ∈ R
N

H×W ×D×H×W , where
H,W,K denote the height, width and the kernel size re-
spectively. (ii) ADD branch: Conditioned by the operand
Pa ∈ R

N
H×W ×D×H×W predicted by the hyper-network

ϕθa(·), this branch performs addition on the input feature
to obtain the resultant feature X̂a ∈ R

N
H×W ×D×H×W .

(iii) MUL branch: Conditioned by the operand Pm ∈
R

N
H×W ×D×H×W predicted by the hyper-network ϕθm(·),

this branch performs Hadamard (element-wise) multipli-
cation on the input feature to obtain the resultant feature
X̂m ∈ R

N
H×W ×D×H×W . And all the hyper-networks used

are two-layer MLPs.

A.2. Optimization Objectives
The unified objective used in Baseline is borrowed from
U2Fusion [4]:

ℓ =λ1ℓssim + λ2ℓmse,

ℓssim =w1(1− ssim(If , I1)) + w2(1− ssim(If , I2)),

ℓmse =w1 · ∥If − I1∥22 + w2∥If − I2∥22,
(1)

where λ1 = 1, λ2 = 20, and w1, w2 is calculated by the
information measured on VGG features.

And for Baseline-TS and the proposed TITA framework,
following SwinFusion [2], the task-specific training objec-
tives are shown as below:

ℓ =λ1ℓssim + λ2ℓtext + λ3ℓint,

ℓssim =
1

2
(1− ssim(If , I1)) +

1

2
(1− ssim(If , I2)),

ℓtext =
1

HW
∥|▽If | −max (|▽I1|, |▽I2|)∥1,

ℓint =
1

HW
∥If −M(I1, I2)∥1,

(2)

where λ1 = 10, λ2 = 20, λ3 = 20 are hyper-parameters,
M(·) is task-specific element-wise aggregation operation.
Specifically, max(·, ·) is employed for IVF and MFF,
mean(·, ·) is applied to MEF.

A.3. Additional Details of FAMO
Considering M fusion tasks associated with M objectives
ℓm}Mm=1. In t-th iteration, the combination weights are ob-
tained by Zt = Softmax(ξt), where ξt ∈ RM are uncon-
strained logits. FAMO updates the model parameters as:

θt+1 = θt − α

M∑
m=1

(
Ct

Zm,t

ℓm,t

)
∇ℓm,t, (3)

where Ct =
(∑M

m=1 Zm,t/ℓm,t

)−1

, α is the step size. And
the weighting logits can be updated as:

ξt+1 = ξt − β(δt + γξt),

δt =

∇⊤Z1,t

...
∇⊤ZM,t


⊤  log ℓ1,t − log ℓ1,t+1

...
log ℓM,t − log ℓM,t+1

 (4)

where β is the step size, γ is the decay. By maximizing
the minimum improvement rate, FAMO effectively allo-
cates computational resources and aligns optimization ob-
jectives, ultimately improving overall performance. For de-
tailed derivation, please refer FAMO [1].

A.4. Token Exchange
TE module [3] operates on the principle that when a unin-
formative token is detected, it can be replaced with a binary
modal token at the corresponding position, preserving es-
sential information while reducing noise:

Xi,1 = Xi,1 ⊙ Iϕθs (Xi,1)≥γ +Xi,2 ⊙ Iϕθs (Xi,1)<γ ,

Xi,2 = Xi,2 ⊙ Iϕθs (Xi,2)≥γ +Xi,1 ⊙ Iϕθs (Xi,2)<γ ,
(5)

where I is an indicator, and the threshold γ is set to 0.02
according to the paper.

B. More Results and Analysis
B.1. Ablation Study for MEF and MFF Tasks
We present the ablation study results for MEF and MFF
tasks in Tab. 1 and Tab. 2. The findings on the MFF task



Table 1. The ablation study for MEF task.

TI TA MO MI FMI Qabf VIF

Baseline 6.6732 0.8953 0.6748 1.4342
Baseline-TS 5.2338 0.8976 0.7154 1.3061

✓ 5.2125 0.8974 0.7148 1.3187
✓ 5.2231 0.8984 0.7227 1.3154

✓ 5.9231 0.8998 0.7039 1.4994
✓ ✓ 5.9976 0.8992 0.7057 1.5153
✓ ✓ 5.1837 0.8989 0.7215 1.3146

✓ ✓ 6.1557 0.9002 0.7235 1.5274
Ours 6.2073 0.9000 0.7227 1.5338

Table 2. The ablation study for MFF task.

TI TA MO MI FMI Qabf VIF

Baseline 6.2336 0.8777 0.5768 1.6171
Baseline-TS 6.2303 0.8822 0.6455 1.5997

✓ 6.2566 0.8821 0.6554 1.5931
✓ 6.2687 0.8824 0.6834 1.5963

✓ 6.2822 0.8833 0.6519 1.6223
✓ ✓ 6.3071 0.8836 0.6523 1.6210
✓ ✓ 6.3229 0.8826 0.6916 1.6050

✓ ✓ 6.4689 0.8841 0.6915 1.6294
Ours 6.5463 0.8847 0.6973 1.6371

Table 3. The ablation study on task-invariant integration for MEF
task.

MI FMI Qabf VIF

SF 5.2338 0.8976 0.7154 1.3061
IrSF 5.2551 0.8975 0.7125 1.3059
IeSF 5.2512 0.8977 0.7163 1.3074

TE 5.2662 0.8969 0.7096 1.3155
PA 5.2428 0.8975 0.7098 1.3056
IPA 5.2273 0.8977 0.7116 1.3048

align with those of the IVF task, reinforcing the same con-
clusions. The relatively lower impact of TI on the MEF
task may be attributed to its higher reliance on global trans-
formations, where the global operation in TA plays a more
significant role.

B.2. Analysis on Task-invariant Integration for
MEF and MFF tasks

We conduct ablation studies to evaluate the effectiveness
of IeSF and IPA in Task-invariant Integration for MEF and
MFF tasks. As shown in Tab. 3 and Tab. 4, by replacing the
IeSF with IrSF or replacing IPA with TE, we observe drops
in overall performance, demonstrating the necessity of both
IeSF and IPA modules.

Table 4. The ablation study on task-invariant integration for MFF
task.

MI FMI Qabf VIF

SF 6.2303 0.8822 0.6455 1.5997
IrSF 6.1816 0.8818 0.6415 1.5916
IeSF 6.2373 0.8822 0.6516 1.6019

TE 6.2386 0.8817 0.6467 1.5952
PA 6.2835 0.8825 0.6461 1.6088
IPA 6.2690 0.8824 0.6541 1.6091

Table 5. The ablation study on task-specific adaptation for MEF
task.

MI FMI Qabf VIF

W/o HPF 6.0651 0.8999 0.7247 1.4957
W/o ADD 5.8250 0.8995 0.7215 1.4760
W/o MUL 6.1305 0.8984 0.7099 1.5164
W/o DW 4.8277 0.8987 0.6894 1.2815
Ours 6.2073 0.9000 0.7227 1.5338

Table 6. The ablation study on task-specific adaptation for MFF
task.

MI FMI Qabf VIF

W/o HPF 6.2898 0.8833 0.6801 1.6039
W/o ADD 6.3395 0.8845 0.6831 1.6385
W/o MUL 6.3512 0.8831 0.6663 1.6148
W/o DW 6.2616 0.8840 0.6862 1.6245
Ours 6.5463 0.8847 0.6973 1.6371

Table 7. The visualization of the dynamic weights on OAF block.

HPF ADD MUL HPF ADD MUL

visible infrared
0.0291 0.2456 0.2054 0.0243 0.2226 0.2729

over-exposed under-exposed
0.0286 0.1963 0.3054 0.0313 0.2575 0.1809

far-focused near-focused
0.0159 0.2480 0.2323 0.0133 0.2231 0.2675

B.3. Analysis on Task-specific Adaptation for MEF
and MFF tasks

We conduct ablation studies to evaluate the effectiveness of
three branches in Task-adaptive Adaptation for MEF and
MFF tasks. As shown in Tab. 5 and Tab. 6, while all
branches contribute to the overall performance improve-
ment, their contributions differ. For example, the MFF task
relies more heavily on the HPF branch, as clarity is directly
related to high-frequency details.



B.4. Visualization of TA
The weights for each branch of OAF for three fusion tasks
is visualized in Tab. 7. It can be observed that the weight
assigned to the HPF branch is relatively small, as high-
frequency details comprise only a minor portion of the over-
all information. Nevertheless, as demonstrated in the abla-
tion study on task-specific adaptation, these high-frequency
components play a critical role in boosting performance.
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