DyGS-SLAM: Real-Time Accurate Localization and Gaussian Reconstruction
for Dynamic Scenes

Supplementary Material

1. Details

Sec.3.1 Dynamic Feature Detection

In Sec.3.1, the weight parameters for geometric and appear-
ance information are set to « = 0.5 and 5 = 0.5, respec-
tively. We use the Interquartile Range (IQR) method to de-
termine the reprojection constraint threshold, the reprojec-
tion depth residual threshold ey, and the scoring threshold
®y,. Specifically, we compute the reprojection error, depth
residual, or score values for all feature points outside the
potential moving object boxes, sort them in ascending or-
der, and calculate the first quartile ()1 and third quartile Q3
of the sorted values. Based on this, the threshold is defined
as:

th=Q3+k (Q3—Q1), 9]

where the adjustment parameter k is set to 2.

Sec.3.2 Dynamic Object Box Correction

In Sec.3.2, the candidate point set Y = {y1,¥y2,...,Ym} is
defined as the set of feature points within a 50-pixel range
around the detection box. To determine whether a candidate
point y; belongs to the dynamic object in the detection box,
a threshold 7' is set based on the probability density distri-
bution of foreground points. The probability density p(x)
of foreground points is estimated using a Gaussian Mixture
Model (GMM), assuming an approximately normal distri-
bution.

Specifically, the mean p,, and standard deviation o,, of
the probability density of foreground points are calculated
as:
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where n represents the number of foreground points. Based
on the statistical characteristics of the probability density
distribution, the threshold is defined as:

T=pp—k-op, 3)

where the adjustment parameter k is set to 2 to moder-
ately reduce sensitivity to outliers. Candidate points y; with
probability density p(y;) exceeding the threshold T" are con-
sidered part of the dynamic object and subsequently con-
tribute to the correction of the detection box.

Sec.3.4 Gaussian Mapping and Adaptive Feature
Densification

1) Gaussian Mapping: The formal definition of a 3D
Gaussian point is given as:

Gz | 1, %) = e 3w = amn), @)

where 1 € R represents the spatial mean, and ¥ € R3*3
denotes the covariance matrix. To ensure the validity of
the matrix during optimization, the covariance matrix X is
decomposed into a scale matrix .S and a rotation matrix R
as follows:

Y =RSSTR'. Q)

During rendering, the 3D Gaussian points are projected
onto a 2D plane. Using the intrinsic matrix K and the ex-
trinsic matrix 7", the 2D mean p’ and covariance ¥’ are de-
fined as:

W =Klp,1)", X =JTET"J7, (©6)
where J is the Jacobian matrix approximating the affine
transformation of the projection. Each Gaussian point is
associated with an opacity value o and a view-dependent
color ¢, which is determined by a set of spherical harmonic
coefficients. The pixel color C' is computed by performing
alpha compositing on the sorted 2D Gaussian points, pro-
ceeding from front to back:

C= Z TZG'z (u I /Ll, E/) g;Cq, (7)
iEN
where:
i—1
T=1[0-Gj|w, 5 oy). ®)
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This equation represents the blending of transparency
and color for different Gaussian points during rendering to
generate the final 2D image.

2) Adaptive Feature Densification: The image is di-
vided into 16 x 16 blocks, with the adjustment weights set
to wg = wy = 0.5. The maximum number of sampling
points is set to nyax = 15, and the adjustment parameter is
setto 3 = 0.5.

Other Details

Our system is fully implemented in C++ and CUDA. The
object detection algorithm used is the TensorRT version of



YOLOX [1], with the YOLOX-s weight model. In our sys-
tem, the semantic thread and the tracking thread run in par-
allel.

The number of features extracted per image is set to
2000.

2. Additional Results

2.1. Qualitative Evaluation of Localization Perfor-
mance

Figs. | and 2 show the ATE of our method on selected se-
quences from the TUM [14] and BONN [12] datasets. Ex-
perimental results demonstrate that our method effectively
overcomes dynamic disturbances to achieve accurate cam-
era localization.
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Figure 1. The ATE of our method on selected sequences from the
TUM dataset.
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Figure 2. The ATE of our method on selected sequences from the
BONN dataset.

2.2. Evaluation of Reconstruction Performance in
Dynamic Scenes

2.2.1. Qualitative Evaluation

Figs. 4 and 5 illustrate the visual comparisons of rendered
images produced by our method and those generated by
PhotoSLAM [3], SplaTAM [6], and MonoGS [10] on other
sequences from the TUM RGB-D dataset [14] and BONN

RGB-D Dynamic dataset [12]. Several existing SLAM
methods for dynamic scenes based on NeRF [11] or 3DGS
[7] have not been open-sourced. We reproduced their re-
sults based on the methods demonstrated in the NID-SLAM
[18] paper, and the visual comparisons of rendered images
are shown in Fig. 6. For DDN-SLAM [9], DN-SLAM [13],
Rodyn-SLAM [4], and DGS-SLAM [8], we compared the
rendered images from the same viewpoints as those pre-
sented in their original papers, as shown in Figs. 7 and 3,
where blank areas indicate sequences for which the respec-
tive papers did not provide results. The experimental results
demonstrate that our algorithm can reconstruct a long-term
consistent map containing only static backgrounds under
dynamic interference conditions, showing significant ad-
vantages in image clarity and artifact reduction.

2.2.2. Quantitative Evaluation

Following RoDyn-SLAM [4] and DG-SLAM [17], we eval-
uate the reconstruction quality of static maps in dynamic
scenes using three metrics: (i) accuracy (cm), (ii) complete-
ness (cm), and (iii) completion rate (the percentage of points
within a 5 cm threshold). The quantitative results in Tab. 1
demonstrate the superiority of our algorithm in reconstruc-
tion quality.

Method Acc. Comp.| Comp. Ratiof
Co-SLAM [15] 18.06 60.86 16.27
ESLAM [5] 40.94 73.03 34.93
RoDyn-SLAM [4] 11.86 13.71 40.12
DG-SLAM [17] 8.06 15.46 43.67
Ours 7.33 14.52 45.78

Table 1. The average reconstruction quality across the ball, ball2,
ps-tk, ps_tk2, and mv_box2 sequences of the BONN dataset. The
best values are in bold, and the second-best are underlined.

Method PSNR?T SSIM?T LPIPS|
TUM BONN TUM BONN TUM BONN
SplaTAM [6] 15.32 18.18 0.62 0.73 042 0.25
DGS[8]  21.12 - 0.82 - 0.16 -
Gassidy [16] - 24.24 - 0.78 - 0.32
Ours 2215 2633 0.89 0.86 0.15 0.22

Table 2. Evaluation of mapping quality based on novel view
synthesis results for BONN dataset (ball, ball2, ps_trk, ps_trk2,
mv_box2) and TUM dataset (w_xyz, w_hs, w_static).

As shown in Tab. 2, our method maintains high map
quality even under the influence of dynamic objects. It is
important to note that the datasets used lack explicit ground
truth benchmarks (i.e., the ground truth images contain un-
removed dynamic objects, while the rendered images rep-
resent results with dynamic objects removed). The compar-
ison is based on input images and the results produced by



different methods; therefore, filtering out dynamic objects
leads to relatively lower values for these metrics.

2.3. Evaluation of Reconstruction Performance in
Static Scenes

Figs. 8, 9, and 10 show the visual comparisons
of rendered images produced by our method and
PhotoSLAM [3] on the TUM dataset sequence
fr3_long_.office_household, and the ICL-NUIM
dataset [2] sequences 1r/kt2 and of/kt 3, respectively.
In this comparative experiment, the number of features
extracted per image was set to 1000. The experimental
results indicate that the proposed densification method
based on image texture complexity significantly improves
the reconstruction of scenes with uneven lighting, low
texture, or smooth surfaces.

2.4. Real-Time Performance and Resource Utiliza-
tion

Tab. 3 presents the running frame rate, rendering frame rate,
GPU memory usage, and reconstruction model size of our
system across different sequences, fully demonstrating its
great potential for practical applications.

Seq Running  Rendering GPU Model
FPS 1 FPS 1 Memory |  Size (MB)
w_hs 33.12 786.28 3.09 7.8
W_XyZ 32.49 729.93 2.96 6.2
ball2 32.12 1112.58 2.67 3.8
mov_box 34.49 925.32 2.76 4.2
crow3 34.78 1051.13 3.12 2.8
syn 36.43 1381.85 2.87 0.6

Table 3. Running frame rate, rendering frame rate, GPU memory
usage, and reconstructed model size of our system across different
sequences.

#Features 1000 2000 3000 4000 5000
Running FPS 1+ 36.85 3390 29.82 2597 20.57

Table 4. The relationship between the number of Gaussian features
and system running speed. The values presented correspond to the
averages across all sequences in Tab. 3.

As shown in Tab. 4, the system’s running speed exhibits
anegative correlation with the number of Gaussian features.
The rendering FPS, GPU memory usage, and model size re-
main nearly unchanged as the number of Gaussian features
increases from 1000 to 5000, and thus are not listed due
to space constraints. Notably, our experiments reveal that
a higher number of Gaussian features does not necessarily
lead to better reconstruction and rendering quality. This is

attributed to the image feature extraction process and our
densification strategy, which ensure that the feature density
aligns with the complexity of the environmental textures.
The rendering results presented in this paper correspond to
feature counts of 2000/1000, achieving SOTA performance.
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Figure 3. Visual Comparison of Rendered Images with DGS-
SLAM.
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Figure 4. Visual comparison of rendered images on the TUM datasets.
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Figure 5. Visual comparison of rendered images on the BONN datasets.
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Figure 6. The visual comparisons of rendered images with NID-SLAM. The results of NID-SLAM were reproduced based on the methods
described in its paper.

DDN-SLAM RoDyn-SLAM

Figure 7. The visual comparisons of rendered images with other SLAM methods for dynamic scenes based on NeRF or 3DGS. Blank areas
indicate sequences for which the respective papers did not provide results.
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Figure 8. The visual comparisons of rendered images on the TUM dataset sequence fr3_long_office_household.
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Figure 10. The visual comparisons of rendered images on the ICL-NUIM dataset sequence of /kt 3.



	Details
	Additional Results
	Qualitative Evaluation of Localization Performance
	Evaluation of Reconstruction Performance in Dynamic Scenes
	Qualitative Evaluation
	Quantitative Evaluation

	Evaluation of Reconstruction Performance in Static Scenes
	Real-Time Performance and Resource Utilization


