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Supplementary Material

This supplementary document provides a comprehensive
overview of our implementation details (Section A), visual-
ization for ablation studies (Section F) and additional visu-
alization for main results (Section G).

A. Implementation Details
A.1. Full List of Training Hyperparameters
All training hyperparameters for our CADD models are
listed in Table 8.

Hyperparameter Value
Number of Layers 5
Hidden size 1152 / 576 / 576
FFN inner hidden size 1152 / 576 / 576
Warmup Steps 2500
Batch Size 96 / 16 / 4
Max Steps 200k
Gradient Clipping 1.0
Adam ω 1e-8
Attention heads 16
Attention head size 72 / 48 / 48
Dropout 0.1
Peak Learning Rate 3e-4
Weight Decay 0
Learning Rate Decay Linear
AdamW ε1 0.9
AdamW ε2 0.999

Table 8. Hyperparameters for CADD Models. Hyperparameters
separated by ‘/’ indicate variations across the three levels: level 1
/ level 2 / level 3.

A.2. Datasets Pre-processing
In this paper, we use two outdoor scene datasets for our ex-
periments: CarlaSC [66] and KITTI-360 [24]. CarlaSC is
based on simulated road scenes, while KITTI-360 comes
from real-world environments. Due to the differences in
their sources and label structures, we apply customized pre-
processing steps to ensure compatibility for experimenta-
tion. The details are provided below.

A.2.1. CarlaSC
CarlaSC, extensively used in our main experiments and ab-
lation studies, is a synthetic dataset composed of outdoor
road point cloud scenes. The dataset originally includes 23
semantic labels, which are grouped into 11 classes based on
the official guidelines in [28]. These 11 semantic classes,
with 0 representing the unclassified category, are detailed

in Table 9. The dataset comprises 18 scenes for training, 3
for validation, and 3 for testing. For our experiments, we
use a high-resolution version of CarlaSC, where each scene
is represented as 2562 → 16 voxels. This resolution corre-
sponds to a physical area covering 25.6 meters in both for-
ward and backward directions from the radar scanner and a
vertical height of up to 3 meters.

Index Label Index Label
1 Building 6 Road
2 Fences 7 Ground
3 Other 8 Sidewalk
4 Pedestrian 9 Vegetation
5 Pole 10 Vehicle

Table 9. Merged semantic labels for the CarlaSC dataset. This
table presents the 10 consolidated classes used in our experiments,
with 0 representing unclassified elements that are excluded from
the list.

A.2.2. KITTI-360
The KITTI-360 dataset features a variety of environments,
including inner-city traffic, residential areas, highways, and
countryside roads. It consists of 11 distinct sequences, each
capturing a continuous driving trajectory, with 9 sequences
designated for training and 2 for testing. Since semantic la-
bels for the test set are unavailable, we further divide the
training data, using 7 sequences (sequence 0, 2, 3, 4, 5, 6,
and 7) for model training and the remaining 2 sequences
(sequence 9 and 10) for evaluation. To generate ground-
truth voxels, we segment accumulated LiDAR scans into
chunks measuring 51.2m→ 51.2m→ 12.8m and voxelize
the points at a resolution of 256 → 256 → 64. The origi-
nal dataset includes 46 categories, but these are remapped
or removed to match the 11 categories used in CarlaSC, as
outlined in Table 10. Certain categories, such as moving
objects, were removed due to their limited relevance in se-
mantic segmentation. These excluded categories constitute
only a small fraction of the labels, ensuring the remaining
labels align the CarlaSC dataset.

B. None-overfitting Verification
We use structural similarity (SSIM) to confirm that a gener-
ated scene differs from its nearest neighbor in the CarlaSC
dataset. Specifically, we generate 1k scenes and identify
their closest matches in the training set using SSIM. Like-
wise, we sample 1k validation scenes and find their nearest
counterparts in the training set. The average SSIM of these
scenes is calculated and presented in Table 11. Figure 7



Index Original Labels Mapped Index Mapped Labels Index Original Labels Mapped Index Mapped Labels
0 Unlabeled 0 Unlabeled 23 Sky remove -
1 Ego Vehicle remove - 24 Person 4 Pedestrian
2 Rectification Border remove - 25 Rider 4 Pedestrian
3 Out of ROI remove - 26 Car 10 Vehicle
4 Static remove - 27 Truck 10 Vehicle
5 Dynamic - - 28 Bus 10 Vehicle
6 Ground 7 Ground 29 Caravan 10 Vehicle
7 Road 6 Road 30 Trailer 10 Vehicle
8 Sidewalk 8 Sidewalk 31 Train 10 Vehicle
9 Parking 7 Ground 32 Motorcycle 3 Other

10 Rail Track 3 Other 33 Bicycle 3 Other
11 Building 1 Building 34 Garage 3 Other
12 Wall 2 Fence 35 Gate 3 Other
13 Fence 2 Fence 36 Stop 3 Other
14 Guard Rail 2 Fence 37 Smallpole 5 Pole
15 Bridge 3 Other 38 Lamp 3 Other
16 Tunnel 3 Other 39 Trash Bin 3 Other
17 Pole 5 Pole 40 Vending Machine 3 Other
18 Polegroup 5 Pole 41 Box 3 Other
19 Traffic Light 5 Pole 42 Unknown Construction 3 Other
20 Traffic Sign 5 Pole 43 Unknown Vehicle 10 Vehicle
21 Vegetation 9 Vegetation 44 Unknown Object 3 Other
22 Terrain 7 Ground 45 License Plate remove -

Table 10. Conversion of KITTI-360 labels to match CarlaSC’s 11 categories. Labels marked as ‘remove’ are not present in CarlaSC, while
those labeled with ‘-’ are excluded from semantic segmentation based on the original settings.

Data SSIM
Generated 0.70

Validation Set 0.65
Table 11. Average SSIM between each generated scene and the
closest scene in the training set.

shows the SSIM distribution, demonstrating that CADD
learns the training set distribution and generates new sam-
ples rather than merely memorizing it.

Figure 7. Data retrieval visualization of 1000 samples.

C. Higher Resolution Results

The method can generate 1024-resolution or even higher-
resolution scenes by adding another diffusion layers. In the
main text, We used 256 resolution for fair comparison with
PDD. Fig. 8 shows that the generated 1024 → 1024 → 256
results on the KITTI-360 dataset with a voxel size of 0.1m→

0.1m→ 0.1m. Compared to the 256 resolution, the higher-
resolution output captures finer structural details.

Figure 8. Generation result at 1024→ 1024→ 256 on KITTI-360.

D. Transferability and Infinite Scene Genera-
tion

Table 12 shows our model’s improved performance when
transferred from CarlaSC to KITTI-360. Fine-tuning effec-
tively adapts it to complex object distributions and scene
dynamics. We can also generate infinite 3D scenes using
sub-scene conditional generation, similar to PDD. Figure 9
shows the results. These results will be included in the sup-
plementary materials.

Finetuned Scales Conditioned F3D↑ MMD↑

None → 0.085 0.022
l = 1 → 0.066 0.019

l = 1, 2, 3 → 0.065 0.015
None ↭ 0.130 0.018
l = 2, 3 ↭ 0.093 0.017

Table 12. Generation results on KITTI-360. Finetuned Scales set
to None indicates training from scratch and others stand for fine-
tuning corresponding pre-trained CarlaSC model.
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Figure 9. Infinite scene generation results.

E. Additional Ablation Studies
E.1. Cube Size Selection
We performed an ablation study on cube size selection in
SCDT for 1282 → 8 ↓ 2562 → 16 upsampling (Table 13).
The default cube size is 8. The results show that a smaller
cube size leads to performance degradation, possibly due
to a reduced receptive field, while a larger cube size does
not improve performance. This study will be added to the
supplementary materials.

Cube Size mIoU↔ MA↔ F3D↑ MMD↑

4 92.43 94.13 0.207 0.093
8 95.18 97.32 0.175 0.078

16 95.13 97.29 0.174 0.080
Table 13. Ablation study on different cube sizes in SCDT.

F. Visualization of Ablation Studies
F.1. Diffusion Process Selection
Figure 10 illustrates the generation results of different diffu-
sion processes in the coarse-to-fine generation task (1282 →
8 ↓ 2562 → 16), including uniform diffusion, absorb dif-
fusion, and the proposed cube-absorb diffusion. Among
these, the cube-absorb diffusion demonstrates the closest
alignment with the ground truth, whereas other methods ex-
hibit varying degrees of noise. This difference arises from
the cube-absorb diffusion starting from a coarse-grained ini-
tial state, in contrast to other approaches that initiate gener-
ation from noise or a fully masked state.

F.2. DiT Architecture
Figure 11 presents the generation results of Cube-DiT and
the proposed SCDT in the coarse-to-fine generation task
(1282 → 8 ↓ 2562 → 16). The proposed SCDT delivers
comparable generation performance to Cube-DiT while sig-
nificantly reducing memory consumption (6.38G compared
to 17.09G).

F.3. Hierarchy Configuration
Figure 12 shows the generation results of our model at
different hierarchy resolutions and depths on the CarlaSC
dataset: (a) 2562 → 16; (b) 642 → 4 ↓ 2562 → 16; (c)
642→4 ↓ 1282→8 ↓ 2562→16; (d) 322→2 ↓ 642→4 ↓

1282 → 8 ↓ 2562 → 16. Hierarchical models clearly out-
perform single-level models, demonstrating their superior
ability to represent 3D structures. Besides, the model’s per-
formance is robust to both the initial resolution and hierar-
chy depth.

G. Additional Visualization of Main Results
Figures 13 and 14 present additional visualizations of un-
conditional generation results on CarlaSC and KITTI-360,
respectively. Our model excels in generating realistic
scenes, including roads, vehicles, and crossroads, produc-
ing results that closely resemble real-world data. Notably,
the generated scenes align more closely with the details of
the ground truth, particularly for the complex and challeng-
ing KITTI-360 dataset.

Figures 15 and 16 present additional visualizations of
conditional generation results on CarlaSC and KITTI-360,
respectively. Our results are much closer to the ground truth
scenes than those of the comparison method, demonstrating
CADD’s ability to align details between the generated out-
puts and coarse inputs.
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Figure 10. Coarse-to-fine generation results of different diffusion processes. The proposed cube-absorb diffusion demonstrates the closest
alignment with the ground truth.
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Figure 11. Coarse-to-fine generation results of Cube-DiT and the proposed SCDT. The proposed SCDT achieves generation performance
on par with Cube-DiT while significantly reducing memory usage (6.38G versus 17.09G).
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Figure 12. Unconditional generation results on various hierarchy resolutions and depths. Model (a): 2562 → 16; Model (b): 642 → 4 ↑
2562→16; Model (c): 642→4 ↑ 1282→8 ↑ 2562→16; Model (d): 322→2 ↑ 642→4 ↑ 1282→8 ↑ 2562→16. Hierarchical models
outperform single-level models, demonstrating their effectiveness in representing 3D structures. The model’s performance is robust to both
the initial resolution and hierarchy depth. .
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Figure 13. Additional visualization of unconditional generation results on CarlaSC. Real scenes are only for reference.
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Figure 14. Additional visualization of unconditional generation results on KITTI-360. Real scenes are only for reference.
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Figure 15. Additional visualization of conditional generation results on CarlaSC.
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Figure 16. Additional visualization of conditional generation results on KITTI-360.
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