Learn2Synth: Learning Optimal Data Synthesis Using Hypergradients
for Brain Image Segmentation
— Supplementary Material —

Xiaoling Hu'f, Xiangrui Zeng', Oula Puonti'»?,
Juan Eugenio Iglesias™**, Bruce Fischl'#, Yaél Balbastre':>*

'Massachusetts General Hospital and Harvard Medical School
2Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital
3Centre for Medical Image Computing, University College London
“Computer Science and Al Laboratory, Massachusetts Institute of Technology
*Department of Experimental Psychology, University College London

In the supplementary material, we begin with the related
work in Section 0, followed by the details of the datasets in
Section 7 and the experimental details in Section 8. Next,
we provide more results in Section 9, Section 10, Section 11
and Section 12, followed by computational cost in Sec-
tion 13. Finally, we discuss the generalization to 3D in Sec-
tion 14 and the limitations in Section 15.

6. Related work

Deep learning based medical image segmentation. In
the last decades, deep learning methods (CNNs) have pro-
vided state-of-the-art accuracy in (medical) image segmen-
tation [3-5, 14—16]. The UNet architecture [16] and its vari-
ants [2, 10] has been one of the most popular methods for
medical image segmentation. FCN [14] transforms clas-
sification CNNs [9, 12, 17] to fully-convolutional NNs by
replacing fully connected layers with fully convolutional
layers. By doing this, FCN transfers the success of clas-
sification tasks [12, 17, 19] to segmentation tasks. Deeplab
methods (v1-v2) [3, 5] add another fully connected Condi-
tional Random Field (CRF) after the last CNN layer to make
use of global information instead of using CRF as post-
processing. Moreover, dilated/atrous convolutions were in-
troduced in Deeplab v3 [4] to increase the receptive field
and make better use of context information, resulting in bet-
ter performance.

While deep learning-based methods have achieved im-
pressive performance metrics, they suffer from two major
issues. First, deep learning methods usually require a large
amount of high-quality labeled data, which is not realistic
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in scenarios where domain knowledge is needed to obtain
the training data. The second issue is the gaps between dif-
ferent domains. The models trained on one domain do not
generalize well to other domains that are different from the
training data, which is a major problem in medical imag-
ing due to differences in imaging device vendors, imaging
protocols, etc.

To solve both issues aforementioned, in this paper, we
propose learning a trainable network to augment the syn-
thetic images, which are then used to train a segmentation
network, avoiding the requirements of a large amount of
training data and overfitting the training data. Due to the
power of UNet for image segmentation with fine structures,
in this work, we use UNet as a baseline and our backbone
network.

7. Details of the datasets

ABIDE dataset. The Autism Brain Imaging Data Ex-
change (ABIDE) [6] is a large, publicly available dataset
aimed at advancing the understanding of the intrinsic brain
architecture in autism. This dataset contains neuroimaging
data from individuals with autism spectrum disorder (ASD)
as well as typically developing controls, collected from
multiple sites over the world. ABIDE includes structural
MRI, resting-state fMRI, and other neuroimaging modal-
ities, alongside extensive demographic and clinical infor-
mation. The whole dataset contains 1087 younger, high-
resolution, isotropic, T1 scans.

OASIS3 dataset. The OASIS3 [13] (Open Access Series
of Imaging Studies) dataset is a comprehensive, longitu-
dinal collection of neuroimaging, clinical, and cognitive
data designed to advance the understanding of normal aging



and Alzheimer’s disease (AD). The dataset includes MRI
scans, neuropsychological assessments, and clinical evalu-
ations from a diverse cohort of participants, ranging from
cognitively healthy individuals to those diagnosed with
mild cognitive impairment (MCI) and Alzheimer’s disease.
The whole dataset contains 1235 older, high-resolution,
isotropic, T1 scans.

Buckner39 dataset. The Buckner39 dataset [7] is a com-
prehensive collection of high-resolution neuroimaging data
designed to facilitate the automated labeling and segmenta-
tion of neuroanatomical structures within the human brain.
The dataset includes T1-weighted MRI scans from 39
healthy adult participants, providing detailed anatomical
representations of the brain’s major regions. Buckner39 is
particularly valuable for evaluating and refining automated
segmentation algorithms, offering a benchmark for the ac-
curate identification and labeling of key brain structures
across individuals.

Freesurfer maintenance dataset [8] contains images ac-
quired in 8 subjects with a FLASH sequence at multiple flip
angles. In contrast with MPRAGE, the FLASH sequence
does not apply an inversion pulse, which results in lower
cortical contrast. Furthermore, different flip angles give
rise to different contrasts. We use FLASH scans acquired
with flip angles of 3° and 5° (proton density-weighted) and
20° and 30° (T1-weighted), with the latter being closer in
appearance to MPRAGE scans than the former. All scans
were skull-stripped and manually delineated with the same
protocol as in [7].

Preprocessing of the datasets. The original subjects are
in 3D space. We first map the original images and the
corresponding masks to the 2D atlas space with the com-
mand mri_convert: https://surfer.nmr.mgh.
Then we
use surfa (https://surfer.nmr.mgh.harvard.
edu/docs/surfa/) package to map all the labels to 4
unique classes.

harvard.edu/ fswiki/mri_convert.

8. Experimental details

Architecture. We use the standard U-Net [16] as our seg-
mentation backbone. It consists of four resolution levels,
where each level contains two convolutional layers (each
with a 3 x 3 convolution followed by a ReLU activation),
followed by a 2 x 2 max pooling operation in the encoder
or a transposed convolution (upconvolution) in the decoder.

All experiments use 2D coronal slices extracted from 3D
brain MR images. We use the cornucopia package” as our
synthetic generator and use a standard UNet [16] as the
backbone for our segmentation and nonparametric augmen-
tation networks. Architecture details are provided as sup-
plementary material. The networks are randomly initialized
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and trained from scratch. We use the soft Dice loss [18] to
supervise the training of the segmentation network. We use
the Adam optimizer [11] with a learning rate of 1 x 1073,
We apply random intensity augmentations (smoothing, bias
field, and noise) and spatial transformations (affine + elas-
tic) to all baselines.

Dataset details for synthetic experiments in Sec. 4.1. We
used 60% of the samples as the training set, 20% as the val-
idation set, and the remaining 20% as the test set. At each
iteration, noise-free synthetic images are generated from
these label maps by assigning random intensities to each
label. New images are generated at every epoch, yielding a
virtually infinite number of synthetic pairs. Overall results
are therefore minimally affected by the portion of training
samples.

Dataset details for real-world experiments in Sec. 4.2.1.
We used 60% of the samples as the training set, 20% as
the validation set, and the remaining 20% as the test set.
Both datasets are multicentric; ABIDE aimed to study par-
ticipants in the autism spectrum, with an age range slightly
biased towards younger participants; OASIS aimed to study
patients with dementia, with an age range slightly biased
towards older participants. Both datasets mostly contain
images acquired with an MPRAGE sequence, which is T1-
weighted and optimized for cortical contrast.

Dataset details for real-world experiments in Sec. 4.2.2.
We use FLASH scans acquired with flip angles of 3° and 5°
(proton density-weighted) and 20° and 30° (T1-weighted),
with the latter being closer in appearance to MPRAGE
scans than the former. All scans were skull-stripped and
manually delineated with the same protocol as in [7]. The
synthetic portion of the training set used label maps derived
from the ABIDE and OASIS3 datasets.

9. More results for the generalizability of
Learn2Synth

To further quantify the impact of this validation step, we
also provide results obtained with fully converged models
as well as the best models selected by using the validation
set in Table 7.

By comparing the performances of using the validation
set or not, we have the following observations:

1. There are significant dice point differences on FLASH
data between ‘Best’ and ‘Last’ under the same setting,
suggesting we will need a validation set for the super-
vised method.

2. Our proposed Learn2Synth is essentially insensitive to
using a validation set or not. So Learn2Synth only re-
ally needs 5 label examples to achieve satisfactory per-
formance, instead of 10 (5 training samples plus 5 vali-
dation samples).
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Setting # of Train, Val., Test  Test Set (MPRAGE) 3° 5° 20° 30°

SynthSeg / 0.861 + 0.028 0.776 + 0.012 0.694 4+ 0.027 0.766 + 0.018 0.781 + 0.016
Supervised UNet (w/ validation) 29,5,5 0.941 + 0.002 0.419 + 0.025 0.396 + 0.020 0.671 + 0.026 0.769 + 0.022
Supervised UNet (w/o validation) 29,5,5 0.936 + 0.004 0.301 + 0.024 0.314 4+ 0.022 0.527 + 0.028 0.637 & 0.035
Supervised UNet (w/ validation) 5,5,29 0.907 + 0.007 0.397 + 0.018 0.413 £ 0.016 0.586 + 0.033 0.692 + 0.033
Supervised UNet (w/o validation) 5,5,29 0.900 + 0.011 0.342 + 0.019 0.379 4+ 0.020 0.637 + 0.032 0.728 + 0.023
Supervised UNet (w/ validation) 1,5,33 0.885 + 0.010 0.267 + 0.019 0.247 +0.013 0.544 + 0.026 0.651 + 0.025
Supervised UNet (w/o validation) 1,5,33 0.871 £ 0.013 0.337 + 0.027 0.372 4+ 0.032 0.654 + 0.018 0.727 £+ 0.017
Learn2Synth (w/ validation) 29,5,5 0.895 + 0.011 0.804 + 0.014 0.789 £+ 0.010 0.785 + 0.025 0.797 + 0.023
Learn2Synth (w/o validation) 29,5,5 0.897 + 0.012 0.801 + 0.012 0.787 + 0.011 0.782 + 0.024 0.794 + 0.023
Learn2Synth (w/ validation) 5,5,29 0.867 + 0.030 0.798 + 0.013 0.789 +0.010 0.795 +0.026 0.799 + 0.024
Learn2Synth (w/o validation) 5,5,29 0.864 + 0.031 0.800 + 0.014 0.788 +0.012 0.786 + 0.024 0.793 + 0.023
Learn2Synth (w/ validation) 1,5,33 0.718 + 0.045 0.606 + 0.020 0.603 + 0.017 0.690 + 0.036 0.707 + 0.032
Learn2Synth (w/o validation) 1,5,33 0.725 + 0.037 0.588 + 0.024 0.591 +0.018 0.695 + 0.035 0.715 + 0.031

Table 7. Performance comparison of different models across various datasets.

10. Unpaired segmentation

An advantage of SynthSeg [1] is that it performs unpaired
segmentation, which only requires a set of segmentation
maps for MRI synthesis during segmentation training. In
contrast, our proposed Learn2Synth framework requires a
small amount of labeled real data during training to learn
the synthesis process.
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Figure 5. Illustration of the unpaired approach for learning seg-
mentation with Learn2Synth. The generator is trained with a
unique adversarial loss that simultaneously aims to make synthetic
scans more realistic while making real scans appear less authen-
tic to the discriminator through Learn2Synth hypergradient back-
propagation. This approach does not require paired segmentation-
label data, as the input segmentation maps and real scans are inde-
pendent of each other.

Here, we explore the potential of unpaired segmentation
using Learn2Synth in combination with a Generative Ad-
versarial Network (GAN). As illustrated in Figure 5, we use
a GAN to generate a synthetic MRI scan that is constrained
to an input segmentation map. Unlike conventional GANSs,
the adversarial loss on the generator is applied not only to
the synthetic scan but also to the real scan. Specifically,
the generator is trained to fool the discriminator by making

the fake data appear more realistic, while simultaneously
making the real data appear faker, through the Learn2Synth
hypergradient back-propagation. The input segmentation
maps and real scans are independent of each other, mean-
ing that paired segmentation-label data is not required.

We conducted experiments under the same conditions as
described in Section 4.2.1. Unpaired segmentation maps
from ABIDE and OASIS-3, along with scans from ABIDE,
OASIS-3, and Buckner39, were used as training samples.
The trained segmenter was then applied to the Buckner39
dataset, resulting in a Dice score of 0.874 (£ 0.0104), out-
performing SynthSeg (0.861), as shown in Table 6.

11. nnUNet as backbone

Table 8 shows results using nnUNet as the seg. back-
bone for both ‘Naive SynthSeg’ and Learn2Synth, with im-
proved performance but much longer training time (=62.1h
vs ~217.7h on OASIS3). Our focus is on training strategies
rather than architectures; networks can be treated as black
boxes, and contrast invariance cannot be learned if trained
only on T1w images.

Method ABIDE  OASIS3
Naive SynthSeg 0.881 0.863
Learn2Synth (parametric setting fixed o) ~ 0.893 0.875

Table 8. Comparison using nnUNet as seg. backbone.

12. Comparison with the same test size and add
Mixed SynthSeg as baseline

We also reported the results in Table 6 (main text) using
a consistent test set size across all comparisons for inter-
pretable evaluation. Additionally, we have included both
the ‘Mixed SynthSeg’ and ‘Finetuned SynthSeg’ baselines
for comparison (Table 9). We only include the results here
for the flip angle of FLASH 3° for space limitations, and
the others will be included in the revised version.



Setting # of Train, Val., Test Test Set (MPRAGE) 3°

SynthSeg / 0.861 4 0.028 0.776 4+ 0.012
Mixed SynthSeg 5,55 0.859 4 0.021 0.781 4+ 0.013
Finetuned SynthSeg 55,5 0.863 £ 0.017 0.783 £+ 0.015
Supervised UNet 29,5,5 0.941 =+ 0.002 0.419 £ 0.025
Supervised UNet 55,5 0.910 £ 0.012 0.397 £ 0.018
Supervised UNet 1,55 0.879 £ 0.014 0.267 £ 0.019
Learn2Synth 29,5,5 0.895 £ 0.011 0.804 £ 0.014
Learn2Synth 5,5,5 0.871 4 0.028 0.798 £ 0.013
Learn2Synth 1,5,5 0.725 4+ 0.019 0.606 + 0.020

Table 9. Comparison of models across various datasets.

13. Computational cost and framework com-
plexity

For OASIS3, taking the ‘Learn2Synth (parametric setting
with fixed o)’ as an example, the model converges after
1,500 epochs with a batch size of 64, requiring ~17.7 hours
of training time on an NVIDIA L40S GPU (48GB), using a
64-core Intel(R) Xeon(R) Gold 6438Y+ CPU and 200 GB
RAM. For comparison, ‘Naive SynthSeg’ requires ~10.3
hours under the same setup.

While Learn2Synth introduces alternating synthetic and
real passes, it eliminates the need for costly cross-validation
typically used to tune augmentation hyperparameters. Un-
like grid search, which scales exponentially with the num-
ber of parameters, Learn2Synth uses hypergradient-based
updates to optimize parameters in a single training run,
making the process far more efficient and scalable.

A key advantage of Learn2Synth is that it avoids man-
ual hyperparameter tuning by treating augmentation param-
eters as learnable variables. Unlike traditional methods like
SynthSeg that rely on heuristic tuning, Learn2Synth uses
hypergradients and a small set of real validation data to au-
tomatically optimize augmentations, improving generaliz-
ability across domains.

14. Generalization to 3D data

While our experiments use 2D slices, the Learn2Synth
framework is architecture- and dimensionality-agnostic and
readily extends to 3D. Its synthetic-to-real training and
hypergradient-based optimization remain applicable in vol-
umetric settings, which pose challenges like anisotropy and
high memory demands. We plan to explore full 3D evalua-
tions in future work.

15. Limitations

One limitation compared with naive SynthSeg [1] is that we
need labeled real scans in the target modality to optimize
the segmentation results. Also, this work focuses specif-
ically on segmentation, as indicated by the paper’s scope.
While the core ideas of Learn2Synth could extend to tasks
like registration or lesion detection, we intentionally limit
our study to segmentation for a focused evaluation. Explor-

ing other tasks is left for future work.
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