MiDSummer: Multi-Guidance Diffusion for Controllable Zero-Shot Immersive
Gaussian Splatting Scene Generation

Supplementary Material

A. Further Implementation Details

A.1. Multilevel Cross-Proposal Consistency

Algorithm 1 Bounding Box Parameter Consistency

Require: Box parameters for object i: {b? }*_. variance
threshold v, and scaling parameter 7
Ensure: Bounding box consistency score Cg)

: T 1M
1: Compute mean bounding box: b* <— 37> 7" b},

2: Compute variance: o2, < 17 S (bfn — Bi)

m=1
3: Convert variance to consistency:
4: C(é) — L

ol ()

5: return Cg’)

Algorithm 2 Edge Consistency

Require: Set of scene graph proposals {G,,}M_, with
edge sets &,,, number of nodes IV

Ensure: Pairwise relationship count matrix E € RV*Y
1: Initialize E <+ Oy«
2: form =1to M do
3 for each edge e;; € &, do
4: E(i,j) «+ E(i,5) + 1
5 end for
6: end for
7: return E

Algorithm 3 Clique Consistency

Require: Set of scene graph proposals {G,,}M_, with
clique groupings C,,, number of nodes N
Ensure: Clique consistency vector Cg € RY
1: Initialize G < Oy xn

2: form =1to M do

3 for each pair (v;, v;) such that (v;,v;) € C,, do
4 G(i,j) + G(,5) + 1

5: end for

6: end for

7. fori =1to N do

8 Cali) < 5 2, G(i.J)

9: end for

10: return Cq

A.2. Per-Stage Runtime Breakdown

The average runtime per scene is broken down as follows:
layout generation (3.1.1) takes 510s for 10 layout proposals
using Claude [2], with an additional 67s for GDM diffusion
(3.1.2); assets (3.1.3) require around 90s per object with
GaussianDreamer [13] and less than 3s with DiffSplat [96].
Registration, assembly and refinement takes approximately
258s per scene assuming the number of cameras V' can fit
into one batch.

Planning Stage Runtime (s)
Claude (M = 10) 510
Layout
EchoLayout 67
Asset Per Object (3N,90N)
Assembly Stage 258
Total Runtime 15-30 min

Table 6. Per-scene runtime breakdown across different stages.

B. Scalability Analysis

Figure 3. Relative performance gain from self-consistency. We
plot changes in mean spatial relationships accuracy relative to
GDM (left) and LLM (right) baselines, shown as a function of
scene complexity (quantified by the number of nodes and edges in
scene graphs). Our method’s advantage against GDM is more pro-
nounced in simpler scenes. Conversely, the positive trend against
the LLM baseline indicates that the performance benefit of our
method grows as scene complexity increases.



Scene Complexity (Nodes/Objects) vs Performance

‘Scene Complexity (Edges/Relationships) vs Performance

...
Al

L.
T
.

>

Figure 4. Comparative scalability of base models and self-
consistency method with respect to scene complexity. LLM base-
line performance deteriorates with increasing numbers of objects
(left) and relationships (right), whereas GDM performance ex-
hibits relative stability. Our consistency method (green) exhibits
intermediate scalability characteristics as a result of the integra-
tion of both guidance mechanisms.

C. Preliminary Probing Experiments: Out-of-
Distribution Generalizability of GDMs

Table 7. Effect of OOD node features and scene graphs on spatial
adherence and realism. We evaluate EchoLayout under an naive
zero-shot open-vocabulary setting, where GDM models are forced
to generalize beyond their training distribution. Results indicate
that obfuscating node features leads to a significant degradation
in physical validity, as evidenced by increased volume estimation
error, to a degree that matches or even exceeds the impact of OOD
G. However, spatial relationships remain relatively intact: GDM
can still adhere to scene graph constraints to a large extent despite
OOD node features causing a drop in performance.

Config 'A Performance
L/R  F/B Bi/Sm Ta/St  Relt VolErr|
In-Distribution 98 98 96 96 97 12.15
OOD V + Orig G 87 82 92 90 87 112.0
OOD V + 00D G 76 85 71 85 79 82.2

Baseline (In-distribution): Standard EchoLayout set-

tings where object representations consists of concate-

nated CLIP node phrase features and a pre-trained ob-

ject categorical embedding v; = [p;, 0;] as discussed in

Sec. 3.1.2, serving as the performance upper bound.

¢ OOD V + Original G: The learnable categorical embed-
ding portion of the node feature is replaced with a ran-
dom tensor sampled from a standard Gaussian distribu-
tion: v; = [F;(unseen prompt),&], & ~ N(0,I). The
scene graph input G remains unchanged from the original
training dataset.

¢« O0OD V + 00D G: Both the class embedding and scene
graphs are replaced with out-of-distribution (OOD) sam-
ples where G are generated scene graphs do not originate
from the original training dataset.

Table 7 reveals a significant degradation in physical realism,

as indicated by increased volume estimation error, when

node features are out-of-distribution. The magnitude of this

degradation matches or even exceeds the scenario where
both the node and graph distributions are OOD. However,
unlike the latter case, spatial relationships remain largely in-
tact, suggesting that the model still adheres to scene graph
edge constraints even under OOD inference. This behav-
ior complements that of the LLM. These findings further
motivate our approach of leveraging both scene graphs and
LLM-based layout proposals: while scene graphs guide the
GDM to establish spatial relationships correctly, layout pro-
posals help ensure physical realism in object placement.

D. Additional Visuals and Ablations

Figure 5. Group co-occurrence (clique stability) C and edge sta-
bility E of a complex scene with strong functional grouping. The
co-occurrence matrix reveals two highly stable cliques, aligning
with human perception of the two desk-group arrangements. The
edge stability matrix exhibits two strong clusters albeit to a lesser
extent, with the most confident (darkest blue) edges capturing left-
right relationships between the two desks. This highlights a limita-
tion of our work: while our self-consistency measures are simple,
intuitive and motivated by graph structures, they are correlated;
hence, we invite the community to seek more disentangled and
statistically rigorous alternatives to obtain more orthogonal con-
sistency measures.

Figure 6. Bounding box parameter consistency Cg) of a few
scenes proposed by the LLM. Positional consistency (z,y, z) is
shown in blue (top row) and size consistency (I, h, w) in red (bot-
tom row). While object sizes remain relatively stable (small red
ellipsoids), spatial positioning exhibits lower consistency (larger
blue ellipsoids).



Figure 7. Qualitative comparison of selected samples with other methods. Middle two columns are ours. The left four columns, including
ours, showcase text-to-GS methods; the right four columns, also including ours, represent text-to-immersive scene methods. MiDSummer
balances the immersive scene generation capabilities of text-to-scene approaches with the well-defined geometry and appearance of object-
centric GS methods while also providing a good trade-off between physical plausibility and fine-grained controllability.

Figure 8. Pairwise comparison of scenes before (pair left) and after (pair right) layout-guided refinement. The refinement process
improves geometric quality and scene coherence while remaining faithful to overall scene geometry. However, it does introduce a smooth-
ing effect that may occasionally wipe out finer details or high-frequency textures. Laplacian and KID metrics alone may not fully reflect
such nuances.




Figure 9. Effect of Surface Loss term during refinement. This term encourages neighboring Gaussian splats to lie on locally coherent
surface manifolds by penalizing displacement vectors that deviate from surface tangency. Curved surfaces, such as ceiling and windows,

could be straightened as a result. The loss Lorface = 7 >N, 2 jen iy Wis (Vig - ;) computes the squared dot product between
n;+n;

5 J
where d;; = |p; — pj|2. This formulation ensures that splats maintain proper geometric alignment on surfaces, preventing

displacement vectors v;; = p; — p; and average surface normals n;; =

1/d;j
2ien (i) Vdi
floating artifacts and enforcing manifold constraints. However, while surface loss effectively aligns existing splats, it does not resolve
undersampling “stripe” artifacts that arise from insufficient splat density in regions further away from the initial camera position, requiring
complementary scale losses and densification strategies to achieve better visual quality.

, weighted by normalized inverse distances w;; =

Figure 10. Effect of Scale Consistency term during refinement. Nearby splats are encouraged to have similar sizes to avoid sudden scale

transitions that create visual artifacts. Lale = o D0y O JENL (D) S wy

log (siﬁie)‘ where s; 4 is the d-th component of the

activated scale vector s;, and e = 107° is a small constant to prevent division by zero. The logarithm ensures scale ratios are treated
symmetrically This term encourages gradual scaling up of splats in sparse regions to fill the gaps. Rather than having isolated large splats
(which would incur high penalties due to scale mismatch with smaller neighbors), the loss function promotes cooperative scaling behavior
where neighboring splats gradually increase in size together. This creates smoother coverage transitions and helps fill sparse regions while
maintaining geometric coherence.

Figure 11. Effect of Depth Consistency term during refinement. This term encourages spatial coherence in rendered depth maps across
multiple camera viewpoints to reduce stripe artifacts and rendering holes. As a result, splats near under-sampled areas are displaced to fill in
the gaps. However, the Surface Loss term is needed to prevent them from deviating from existing surfaces. For a set of camera views V, the
loss is defined as Laepn = ﬁ Y vey (LSZP’;) + £§:l;fl’1)), where LI(S:Q:E) =430 Z]Vif max(0, |Dy[i,j + 1] — Dy i, 5]| — 7)* and

(v,y) _

depth = e St ZJVZI max(0, | Dy[i+1, §]— Dy [i, ]| —7)? measure horizontal and vertical depth discontinuities respectively. Here,

D, [, j] represents the rendered depth at pixel (z, j) in view v, 7 = 0.2 is a threshold parameter that preserves legitimate geometric edges
while penalizing artificial depth jumps, and the max (0, -) function ensures that only depth gradients exceeding the threshold contribute to
the loss. This formulation maintains depth smoothness across multiple viewpoints while preserving surface integrity, effectively reducing
visual artifacts.




Figure 12. Qualitative results for scene layout generation evaluated on randomly sampled scenes from the SUN RGB-D NYU subset. LLM-
based methods frequently identify objects beyond ground truth annotations, often detecting additional or more semantically descriptive
entities. Spatial arrangement of objects varies between methods, and semantically equivalent objects are treated interchangeably.
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Figure 13. Qualitative results for scene layout generation evaluated on randomly sampled scenes from the SUN RGB-D NYU subset. LLM-
based methods frequently identify objects beyond ground truth annotations, often detecting additional or more semantically descriptive
entities. Spatial arrangement of objects varies between methods, and semantically equivalent objects are treated interchangeably.
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