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A. Method
A.1. Gradient Equivalence
Here, we prove that the expected value of the gradient using Adaptive Parallel-Sequential Processing (APSP) is the same as
the full-context gradient when no mini-contexts are discarded. The full-context gradient, exemplified by the i-th stage output
c̄idec,j , with respect to parameters ω is defined as:

→ωLi
full = →ω

n∑

j=1

len(sj)
L

c̄idec,j , (8)

where L =
∑n

j=1 len(sj) ensures equal weighting of image-label pairs across mini-contexts. For brevity, we focus on the
i-th stage, with the understanding that the analysis applies analogously to other stages.

In APSP, mini-contexts are randomly shuffled, and we select the last mini-context to compute the gradient. Numerically,
this is equivalent to randomly selecting a mini-context with index ε from {1, 2, ..., n} with a uniform distribution, denoted
as ε ↑ U{1, ..., n}. The APSP gradient using only the ε-th mini-context is:
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To ensure the expected APSP gradient matches the full-context gradient, during gradient computation we scale c̄idec,ε by a
factor of n, making →ωLi

APSP-scaled,ε = →ω
len(sω)

L nc̄idec,ε the scaled gradient for the ε-th mini-context. It is important to note
that the scaling factor of n is exclusively applied during the gradient computation phase and is omitted during the forward
computation, thus having no impact on the forward computation of the model. The expected APSP gradient with scaling is:
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Equation (10) shows that the expected APSP gradient equals the full-context gradient →ωLi
full. This analysis, exemplified for

the i-th stage, extends to all network stages and parameters.
Thus, by employing the gradient of only the last mini-context and scaling by n, APSP preserves the full-context gradient

expectation while enabling memory-efficient computation.

A.2. U-Shape Fusion Strategy Explanation
In Figure 8, (a) illustrates our proposed U-Shape fusion strategy, while (b) shows a fusion strategy with alternating feature
transmission, similar to those presented in [12] and [14] for comparison in the following analysis. The red semi-transparent
arrows indicate the order of computation for feature maps in the network.



In case (b), there is a problematic trade-off between memory usage and computational cost. For example, when computing
layer 2 of the target branch, it is necessary to calculate the feature maps for all image-label pairs in the context branch at layer
2, which are then passed to the target branch. After this, two options arise:
1. Retaining the context branch layer 2 features for subsequent computations requires storing feature maps for all image-label

pairs across all mini-contexts during sequential processing, which significantly increases memory usage.
2. Discarding the context branch layer 2 features saves memory but requires recomputing them for subsequent layers, which

substantially increases computational cost.
Both options severely hinder efficient sequential processing. In contrast, strategy (a) avoids these issues. For each image-
label pair, all required context representations are obtained in a single pass, allowing computed feature maps to be discarded
during sequential processing, thereby ensuring computational efficiency.

Figure 8. Illustration of different fusion strategies. (a) The proposed U-Shape fusion strategy. (b) The alternating fusion strategy. The red
semi-transparent arrows indicate the computation order of the feature maps in the network.

B. Data
B.1. Domain Shift Between Training and Test Data
We trained a discriminator to distinguish between images from the training set and those from the held-out set, achieving
accuracy, precision, recall, and F1 scores of 0.934, 0.932, 0.918, and 0.925, respectively. These results serve as proxy
evidence for the presence of domain shift.

B.2. Data Sampling
During training, tasks are selected based on a predefined sampling rate, followed by the random selection of a dataset within
the chosen task with equal probability. Given a context size L, we randomly sample L + 1 image-label pairs from the
training set of the selected dataset. One of these samples is alternately designated as the target image and ground truth,
while the remaining L samples serve as the context set for the model. This process generates L+ 1 unique target image and
corresponding context set, significantly reducing the time consumption associated with data I/O.

Since the model is designed for binary classification, for multi-class segmentation datasets, we iteratively select each class
as the foreground and the remaining classes as the background during training.

In generation tasks, we simulate various scenarios. For bias field correction, 3D bias fields are generated using Legendre
polynomials with random coefficients. Gaussian noise removal involves simulating noise with a mean of 0 and a standard
deviation randomly selected within the range 0.15 to 0.25. For salt-and-pepper noise removal, noise is applied with random
probabilities equal to 0.04, where salt noise (value of 1) and pepper noise (value of 0) are added separately. For the inpainting
task, binary masks are created using random 3D Perlin noise to occlude specific regions of the input image. The 2D-to-3D
task requires the model to reconstruct a complete 3D brain volume from only three central brain slices, with this task restricted



Type for use Dataset Task # Scans # Masks Modality

Training and
Validation Set

TopCow[59] Seg., Gen. 90 90 MRA
CAS2023[4] Seg., Gen. 100 100 MRA

ISLES2022[24] Gen., Mod. 750 0 DWI, ADC,
FLAIR

ATLAS[39] Seg., Gen. 655 655 T1w

IXI[3] Gen., Mod. 2268 0 T1, T2,
MRA, PD

ICH Unlabeled[16] Gen. 2000 0 CT
ADHD[1] Gen. 950 0 T1
ADNI[35] Gen., Mod. 9923 0 T1

CMI[5] Gen. 5146 0 T1
GSP[26] Gen. 2616 0 T1
HAB[18] Seg., Gen. 460 460 T1

NIMH[49] Seg., Gen. 248 248 T1
OASIS[46] Gen. 3916 828 T1

UKBiobank[52] Seg., Gen. 4000 2000 T1, T2

BraTS[48] Seg., Gen., Mod. 5004 1251 FLAIR, T1,
T1CE, T2

Held-out Set

WMH[37] Mod. 120 0 T1, FLAIR
CCNP[43] Gen. 1580 0 T1

FCON1000[2] Seg., Gen. 1096 1096 T1
PPMI[47] Gen. 2752 0 T1

Total Seg., Gen., Mod. 43674 6728
T1, T2, FLAIR,

MRA, DWI, ADC,
PD, CT

Table 2. Summary of Datasets. Seg., Gen., and Mod. represent segmentation, generation (excluding modality transformation), and
modality transformation tasks, respectively.

to images in MNI space. In the super-resolution task, images are downsampled by a factor of 2. For skull stripping, input
images include the skull, while ground truth images, with the skull removed, are generated using FreeSurfer [15]. Lastly, the
modality transformation task uses registered pairs of different imaging modalities as input and output.

Figure 9 illustrates the target image, ground truth, and context set (with two image-label pairs shown as examples) for all
tasks. The model takes the target image and context set as input, using the context set to infer the required task.

Task Sampled Rate Weight
Segmentation 2 50
Bias Remove 1 1

Gaussian Noise Remove 1 1
Salt & Pepper Noise Remove 1 1

2D to 3D Generation 1 0.5
Inpainting 1 1

Super-Resolution 1 1
Skull Stripping 1 1

Modality Transform 1 1

Table 3. Sampling rate and weight assigned to each task when training.

B.3. Image and Task Augmentation
Image and task augmentation are performed after obtaining data sampling. For image augmentation, we applied the fol-
lowing transformations: random affine transformations (p=0.05), elastic deformations (p=0.05), flips (p=0.05), and rotations



Target Image GroundTruth Image-Label Pair 1 Image-Label Pair 2
Context Set Context Set
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Figure 9. Visualization of the target image, ground truth, and image-label pairs in the context set.



Original Image Augmented Images by GIN

Figure 10. Visualization of the images augmented by GIN [51].

Figure 11. Visualization of the synthetic images [12, 25] for the segmentation task and corresponding segmentation masks.

(p=0.05). To extend the diversity of input images, we introduced random intensity shifts (p=0.2), intensity scaling (p=0.2),
Gaussian noise (p=0.1), intensity inversion (p=0.05), and contrast enhancement using a random convolutional network called
GIN [51] (p=0.05). Figure 10 showcases examples of applying GIN to process images, resulting in the generation of random
and diverse modalities.

For task augmentation, we employed several methods as follows:
• Random Task Overlapping: To enhance the model’s ability to perform multiple tasks in a single run, we randomly

overlay tasks during training: bias field correction, Gaussian noise removal, salt and pepper noise removal, inpainting, and
super-resolution, each with a probability of 0.05. These overlays are independent.



• Random Modalities (p=0.05): In modality transformation tasks, we also applied GIN [51] to the target and ground truth
images. The same parameters were used for both context and target images.

• Random Foreground (p=0.5): In multi-class segmentation datasets, multiple classes were randomly grouped into a single
foreground class, with remaining classes assigned as background. This approach increases the variety of segmentation
tasks. Specifically, we randomly sampled k classes in the dataset (capped at 10) to form the foreground.

• Sobel Filter (p=0.05): In segmentation tasks, the Sobel filter was applied to the labels, with the model tasked to predict the
filtered output.

• Mask Inversion (p=0.05): In segmentation tasks, the foreground and background masks were swapped to introduce vari-
ability.

• Random Dilation (p=0.05): The segmentation masks of the target and context are dilated by 1 voxel.
• Random Erosion (p=0.05): The segmentation masks of the target and context are eroded by 1 voxel.

Each image and task augmentation was applied independently according to its probability, and these augmentations are
mutually compatible.

Synthetic Data. To enhance generalization, we incorporated synthetic data, following [12, 25], as shown in Figure 11. This
added 100 segmentation datasets with varying contrasts, each containing 100 3D image samples.

C. Experiments
C.1. Training
Neuroverse3D was trained on eight NVIDIA V100 GPUs, with a batch size of 1 per GPU, using the ADAM optimizer.
Training ran for 120K steps with an initial learning rate of 10→4. Validation loss was evaluated every 1.2K steps, and the
learning rate was halved if no improvement was observed over 20 evaluations. To improve training efficiency, the context
size and mini-context size were fixed at 3 for the first 100K steps, requiring the model to process only one mini-context.
Then, the context size was uniformly selected between 1 and 8 for the final 20K steps. Total training took approximately 8
days, with the model achieving the lowest validation loss selected. All task-specific models were trained on a single GPU for
36K steps, due to the much smaller training set and faster convergence compared to the multi-task ICL model.

C.2. Evaluation
Performance was assessed using the Dice coefficient for segmentation tasks and the Peak Signal-to-Noise Ratio (PSNR) for
generation tasks on held-out datasets. Each task and setting were evaluated 10 times with randomly selected context sets to
compute the average and standard deviation, ensuring robust performance measurements.

C.3. Qualitative Results
Figure 12 present the comparisons between our model and other ICL models. In segmentation tasks, other ICL models
often produce false positive results on background slices, while our Neuroverse3D effectively captures global information,
eliminating this issue. For generation tasks, Neuroverse3D demonstrates improved slice-to-slice consistency compared to 2D
ICL models, underscoring the critical importance of leveraging a 3D model.

Moreover, Painter, an ICL model trained on natural images, struggles to handle these specialized medical imaging tasks
despite being exposed to extensive data and having a large number of parameters. This highlights that for ICL models,
merely providing context might be insufficient for adaptation to the medical domain without incorporating domain-specific
knowledge.

Figure 13 presents the comparison results between our model and task-specific models. Overall, in 3D scenarios, with
a limited number of samples and well designed data augmentation, few-shot task-specific models can achieve impressive
results, which aligns with findings from previous studies [6]. For 3D segmentation tasks, the performance of Neuroverse3D
is on par with both few-shot and fully supervised models.
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Target Image Ground Truth Neuroverse3D Neuralizer SegGPT or Painter UniverSeg

Figure 12. Qualitative results comparing of ICL models. In the SegGPT or Painter column, the results for segmentation tasks are from
SegGPT, and the results for generation tasks are from Painter.
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Figure 13. Qualitative comparison with task-specific models.



Smodified L1 Gradient Loss Cerebral
Cortex Hippocampus Thalamus Lateral

Ventricle Putamen Amygdala Average

↭ 0.8847 0.7618 0.8586 0.8150 0.8220 0.6439 0.7977
↭ 0.8724 0.7791 0.8648 0.8307 0.8167 0.6446 0.8014
↭ ↭ 0.8898 0.7917 0.8726 0.8290 0.8398 0.6812 0.8173

Table 4. Detailed ablation study of segmentation tasks.

Smodified L1 Gradient Loss Bias Field
Correction

Gaussian
Noise Removal

Salt-and-Pepper
Noise Removal 2D-to-3D Inpainting Super

Resolution
Skull

Stripping
Modality

Transformation Average

↭ 27.63 25.57 35.85 25.50 31.49 27.71 27.99 23.79 28.19
↭ 24.16 24.93 30.82 25.55 29.19 27.48 27.44 23.81 26.67
↭ ↭ 27.68 25.89 35.72 26.08 31.21 28.08 28.61 23.74 28.38

Table 5. Detailed ablation study of generation tasks.

C.4. Inference Cost and Model Size
Table 6 summarizes the FLOPs and parameter counts for the models during inference. The task-specific model is imple-
mented as a 5-stage U-Net with channel sizes of (32, 64, 128, 256, 512). Similarly, both the target and context branches of
Neuroverse3D utilize a 5-stage U-Net with the same channel configuration.

Model Parameters (M) Inference TFLOPs
Task-specific 35.02 1.71
Neuroverse3D (L = 1) 70.85 4.35
Neuroverse3D (L = 8) 70.85 16.8

Table 6. Model parameters and inference FLOPs.

Inference Time (s) Context (pair) Parameters (M)

Neuroverse3D 1.01 8 3D 70.85
Neuralizer [14] 4.96 32 2D 1.27
UniverSeg [12] 8.36 64 2D 1.18

Painter [54] 31.35 1 2D 307.72
SegGPT [55] 184.89 8 2D 307.72

Table 7. Inference time for a single 3D image (128 2D slices) and the corresponding model settings on a V100 GPU. For other comparison
methods, we adopt the optimal context settings reported in their respective papers, consistent with the settings in Fig. 4.

C.5. Different Fusion Stage Configurations

Fusion Stage(s) 5 5–4 5–3 5–2 5–1 (Ours)
Segmentation (Dice) 0.8019 0.8118 0.8274 0.8347 0.8446
PET Segmentation (Dice) 0.2870 0.3162 0.3714 0.4945 0.5314
Generation (PSNR) 25.82 26.36 27.41 27.94 28.87

Table 8. Performance under different fusion stage configurations. Stage 5 corresponds to the deepest stage.

Tab. 8 summarizes the results of the ablation study on fusion stages. Denser connections improved the model’s perfor-
mance, especially on PET segmentation—an unseen modality.



Context Modality Bias Removal Gaussian Salt & Pepper Inpainting Super-res. 2D to 3D
T1 28.32 26.31 35.98 31.52 28.29 26.63
T2 24.93 18.88 34.86 29.18 25.34 14.15
CT 24.95 23.32 33.97 28.67 24.62 12.27

Table 9. Generation performance (PSNR) under different context modalities, with T1 as the target modality.

C.6. Impact of Different Context Modalities
Tab. 9 presents the impact of different context modalities. For all tasks, performance is optimal when the context modality
matches the target modality. The performance drop in salt-and-pepper noise removal is relatively small, potentially because
this task is less dependent on contextual information. In contrast, Gaussian noise removal and 2D-to-3D transformation show
more pronounced performance degradation, likely due to their greater reliance on context to convey task-relevant knowledge.
These findings underscore the importance of modality alignment for the effective performance of ICL models.

C.7. Additional Baseline Comparisons
In Tab. 10, we compare a fine-tuned version of SegGPT (SegGPT*), representative segmentation models (nnUNet [34],
Swin-UNETR [21]) trained on our training dataset, and the prompt-based model SAM-Med3D [53]. Our model consistently
achieves the best overall performance. While nnUNet performs well on the held-out dataset, its performance degrades
significantly on the PET modality, highlighting the strength of ICL models in generalizing across substantially different
domains.

nnUNet Swin-UNETR SegGPT* SAM-Med3D (1 Point) Ours
Held-out Set 0.8429 0.8036 0.523 (→ 0.154) 0.1526 0.8446
PET (Unseen modality) 0.3380 0.4321 0.200 (→ 0.036) 0.1466 0.5314

Table 10. Segmentation performance (Dice coefficient). SegGPT* denotes the SegGPT model fine-tuned on our training set. The brain
anatomical segmentation task is conducted on the PET modality from the ADNI dataset.


