A. Comparison details among RSFMs with dif-
ferent backbone networks

Previous research on RSFMs primarily utilized existing vi-
sual encoders to extract deep features, integrating various
self-supervised learning strategies with decoder structures,
and pre-training on large-scale RS datasets. Visual en-
coders, as the core components of these models, are gener-
ally divided into two categories in recent research: 1) CNN-
based methods [31], [40], [39], [2], as shown in Fig. 6 (a).
These models typically adopt the ResNet18/50 framework
[25], with the residual module serving as the key learning
structure. These approaches extract rich information from
RS data through pixel masking reconstruction, expert ge-
ographical knowledge supervision or contrastive learning
signals. 2) Attention-based methods, such as [15], [56],
[53], [44], [41] and [3], as illustrated in Fig. 6 (b). These
models primarily utilize the ViT [17] and Swin Transform-
ers [35] as visual encoders, where the fundamental modules
rely on attention mechanisms [55] and feed forward net-
works (FFNss) to model global dependencies. Pre-training is
typically conducted through masked reconstruction, knowl-
edge distillation or contrastive signals to enhance the ro-
bustness of the model representations.

In summary, current RSFMs typically employ CNN-
based or attention-based methods as visual encoders, inno-
vating in learning and training strategies to enhance model
performance. As shown in Fig. 6 (c), RS-vHeat employs
a heat-conduction-based visual encoder, with the heat con-
duction operator serving as the core computational mod-
ule. During self-supervised learning, it applies frequency-
domain and spatial-domain masking reconstruction con-
straints, along with an additional contrastive loss, which dif-
ferentiates it significantly from existing RSFMs.

B. Preliminary of heat conduction

Inspired by the physical principle of heat conduction, vHeat
[62] considers a region as a two-dimensional region D €
R2. Then, for each point (x,%) in the region, its tempera-
ture is u(z, y, t) at time ¢, and the initial condition is ¢ = 0.
The heat conduction propagation on this region can be ex-
pressed:
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where k represents the thermal diffusivity. We denote the
Fourier Transform and its inverse using the symbols F and
F 1, respectively. After taking the Fourier Transform on
both sides of the equals sign in Eq. (9), we formulate the
calculation of physical heat equation as:
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We represent the result of the Fourier transform of
u(x,y,t) as follows:
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The left and right of Eq. (10) can be reformulated as
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Furthermore, the Eq. (10) is expressed as an ordinary dif-
ferential equation in the frequency domain:
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To solve i(wy,wy,t) in Eq. (14), we use f(wx,wy)
to represent the Fourier Transform of f(z,y), and we
can get the following result under the initial condition of
W(wg, wy, t)|t=0:

(W, wy, ) = Jz(wmwy)e—k(“’i“‘wi)t (15)

Finally, the values in the frequency domain are converted
back to the space domain by inverse Fourier Transform, and
we get the general solution of heat equation in the spatial
domain expressed as follows:
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C. Implementation details of the masking
strategy

Given the multi-modal input (optical and SAR), denoted as
I(z,y,¢) = {I,,I,},1, € REXWx3 [ ¢ RAXWxL
the process begins by applying the DCT along each im-
age dimension ¢ = 1,...,C, extracting 2D planes from
the spatial domain I(x,y) and converting them into its fre-
quency representation [ (u, v). This transformation concen-
trates low-frequency information in the top-left corner of
the frequency spectrum:

M-1N—
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where M and N denote the width and height of the input
image, respectively.

To address signals across different frequency ranges, we

apply a sector mask to the transformed image. Centered

at the top-left, this mask separates the image into distinct
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Figure 6. Comparison of the self-supervised training scheme for the heat-conduction-based RSFM with other methods. (a) CNN-Based
methods [31], [40], [39], [2]. (b) Attention-Based methods [15], [56], [53], [44], [41], [3]. (c) Heat-Conduction-Based method (ours). In
our visual encoder, the heat conduction operator is employed to replace the residual blocks in CNN-based networks, and the attention layers
in attention-based networks. For optical (OPT) and SAR inputs, the dual constraints of multi-domain mask reconstruction and distance
metrics for multi-modal feature representations provide self-supervised signals during the pre-training process. This approach transforms
the visual semantic propagation into a process of thermal diffusion within a thermal space, guided by the scene and object characteristics,

dynamically extracting global information across the entire image.

high-frequency I"9"(u,v) and low-frequency I'°*(u,v)
regions:

110 (y, v), 19" (u,v) = M © I(u,v) (18)

The binary mask M, sized (M x N), is applied to each
dimension c using the operator ©. Each element of M takes
a value of either O or 1.

After applying the mask, we perform the IDCT to con-
vert the processed frequency representation back to its spa-
tial representation along each dimension:
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Where 1'% (x, ) and I"9" (. /) denote the low- and high-
frequency representation that are converted back to their
spatial domain after applying the mask. The results are then
concatenated to restore the original dimensionality.
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D. Configuration and visualization results of
fownstream task datasets

RS-vHeat is trained on 10 datasets across 4 downstream
tasks. In this section, we provide detailed information about
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the datasets and experimental configurations.
D.1. Single- and multi-modal semantic segmentation

We utilize RS-vHeat as the visual encoder and imple-
mented UPerNet [65] with cross-entropy loss for the output
head. Additionally, we employ the AdamW optimizer with
a learning rate of 6e-5 and conduct a warm-up of 1500 iter-
ations.

Dataset. We evaluated our model on three single-modal
datasets and one multi-modal dataset:

1) The Potsdam dataset [47] comprises 38 images. This
dataset is annotated with six classes, each having a resolu-
tion of 6000 x 6000 pixels. The input resolution is set to
512 pixels.

2) The iSAID dataset [63] comprises 2,806 images with
varying resolutions, primarily focusing on urban environ-
ments. The dataset includes annotations for 15 different
categories and we utilize an image size of 896 pixels as the
input for the model.

3) The Air-PolSAR-Seg dataset [61] focuses on polari-
metric SAR images. It offers a region measuring 9082 x
9805 pixels and includes 2,000 image patches, each sized
512 x 512. The dataset features pixel-wise annotations cov-
ering six categories. We adopt a size of 512 pixels for the
image input.

4) The WHU-OPT-SAR dataset [32] is a multi-modal
segmentation dataset with a resolution of 5 meters. It in-
cludes optical and SAR data from the same region, cat-
egorized into seven classes. Each image has a size of
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Figure 7. The qualitative results of RS-vHeat and several representative RSFMs on the iSAID dataset. Each column from left to right
represents: ground truth, CACo (ResNet-18), GASSL (ResNet-50), Scale-MAE (ViT-L), Satlas (Swin-B), and the results from our model,
RS-vHeat. The last two columns on the right visualize the output variations of RS-vHeat across the final two stages.

Table 10. Comparison of APs, for each category, mAPs) and mAP;5 on SAR-AIRcraft-1.0 with other specialized models.

Method |  Publication | A330 | A320/A321 | A220 | ARJ21 | Boeing737 | Boeing787 | Other | mAPsy? | mAPys?
Faster R-CNN [45] TPAMI'2016 85.0 972 785 74.0 55.1 729 70.1 76.1 622
Cascade R-CNN [4] CVPR’2018 87.4 97.5 74.0 78.0 54.5 68.3 69.1 757 589
RepPoints [73] ICCV’2019 89.8 97.9 71.4 73.0 557 51.8 68.4 72.6 53.3
SKG-Net [19] JSTARS 2021 79.3 782 66.4 65.0 65.1 69.6 714 70.7 46.4
SA-Net[78] | RADARS’2023 88.6 94.3 80.3 78.6 59.7 70.8 71.3 717 62.8
RS-vHeat (Ours) - | 984 | 979 | 811 8.3 | 820 798 | 811 | 871 | 674

5556 x 3704 pixels. We uniformly cropped the multi-modal
images to a pixel size of 256 for model input.

Metric. Following the configurations of RingMo [51] and
SkySense [24], we evaluate the mean Intersection over
Union (mloU) on the iSAID dataset and test the mean F1
score (mF1) on the Potsdam dataset. For the AIR-PolSAR-
Seg dataset, we use three metrics: mloU, Overall Accu-
racy (OA) and Average Accuracy (AA). We assess OA and
User’s Accuracy on the WHU-OPT-SAR dataset following
the setup outlined in the corresponding paper.

Additional Results. The Fig. 7 displays the process visual-
izations and prediction results for the iSAID dataset, which
display that the heat-conduction-based backbone exhibits
adaptive characteristics when capturing features across dif-
ferent layers.

D.2. Object Detection

We conduct coarse- and fine-grained experiments on op-
tical and SAR datasets to demonstrate the robustness of RS-
vHeat. In the horizontal bounding boxes (HBB) task, we
employ SGD as the optimizer, with a base learning rate
set to 0.01. A warm-up phase of 3 epochs is conducted.
YOLOX [21] is used as the output head, and experiments
are conducted using cross-entropy loss and IoU loss. In
the oriented bounding box (OBB) task, we adjust the base
learning rate to le-4. The warm-up phase consists of 500
iterations. Oriented RCNN [68] is used as the output head,
applying cross-entropy and Smooth £, loss.

Dataset. Our model is tested on three challenging object
detection datasets:

1) FAIRIM [52] is an optical fine-grained dataset with
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Figure 8. The qualitative results of RS-vHeat and several representative RSFMs on the DIOR dataset. Each column from left to right
represents: ground truth, CACo (ResNet-18), GASSL (ResNet-50), Scale-MAE (ViT-L), Satlas (Swin-B), and the results from our model,
RS-vHeat. The last two columns on the right visualize the output variations of RS-vHeat across the final two stages.

objects annotated using OBB, encompassing five major cat-
egories, further divided into 37 subcategories. The dataset
contains over 40,000 images. Following the official split,
we ultimately submitted the test results to the website to
obtain accuracy measurements. We utilize an image size of
512 pixels as the input for the model.

2) SAR-AlIRcraft-1.0 [78] is a HBB fine-grained SAR
aircraft object detection dataset designed for challenging
scenarios, totaling 4,368 images. It encompasses seven fine-
grained categories. We adopt a size of 640 pixels for the
image input.

3) DIOR [30] is an optical dataset that includes 20 cate-

gories. It comprises a total of 23,463 images and provides
HBB annotations. We utilize an image size of 800 pixels as
the input for the model.
Metric. On the FAIRIM and DIOR dataset, we evalu-
ate the mAP (Mean Average Precision). For the SAR-
AlRcraft-1.0 dataset, we evaluate the APsy for each cate-
gory, mAPs5y and mAP75. mAPsy and mAP75 represent the
mAP at IoU thresholds of 0.5 and 0.75, respectively, with
category-specific precision calculated at an IoU threshold
of 0.5.

Additional Results. The visualization results of the DIOR

dataset are shown in Fig. 8. From the feature extraction
process and results, RS-vHeat outperforms other RSFMs in
terms of extracting dense RS objects. Additionally, we fur-
ther refine the RS-vHeat extraction results for each class
of the SAR-AIRcraft-1.0 dataset in Tab. 10, highlighting
its enhanced capability in recognizing various aircraft types
in SAR scenarios compared to specialized object detection
models.

D.3. Change Detection

We employ RS-vHeat as the visual encoder, accommo-
dating images before and after transformation. AdamW op-
timizer is used with a base learning rate of 0.002 and we
train for 200 epochs. The BIT architecture [7] is utilized for
subsequent image change analysis, with cross-entropy loss
applied for the experiments.

Dataset. We use the LEVIR-CD dataset to train and test:

1) The LEVIR-CD dataset [6] consists of 637 image
patch pairs obtained from Google Earth. Each patch has
a size of 1024 x 1024 pixels. The dataset primary focus is
on building-related changes, such as the emergence of new
structures and the decline of existing ones. We utilize an
image size of 256 pixels as the input.

Metric. We use Fl-score to evaluate change detection per-



formance. Fl-score is the harmonic mean of precision and
recall, providing a balanced measure of performance.
D.4. Image Classification

We extend our model by attaching a classification head
designed to handle the classification task and employ cross-
entropy loss for computation. We utilize AdamW as the op-
timizer with a learning rate of 5e-4, training for 300 epochs.
Dataset. We validate our model on two benchmark datasets
as described below.

1) The Aerial Image Dataset (AID) [64] consists of 30
categories, with each category containing approximately
220 to 420 images sized at 600 x 600 pixels, totaling 10,000
images.

2) The NWPU-RESISC45 dataset [13] is a RS image

dataset comprising 45 categories, with a total of 31,500 im-
ages distributed across these categories. Each category con-
sists of 700 images.
Metric. We use OA to evaluate classification performance.
We follows standard practices in the field [24], using 20%
and 50% of the AID dataset as training sets, and 10% and
20% of the NWPU-RESISC45 dataset as training sets.



