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Supplementary Material

1. Comparisons of the cross-compression de-
tection performance

In practice, the compression factor of a video that we need
to detect may be unknown. To assess our model’s perfor-
mance across different compression levels, we conduct ex-
periments involving cross-compression. Specifically, DF-
Platter provides videos compressed at levels CO, C23, and
C40. We train our model on videos compressed at C23 and
test it on videos compressed at CO and C40. As shown in
Table 1, our method improves frame-level detection perfor-
mance in both “C23 to C40” and “C40 to C23” scenarios.
Notably, SBI achieves a 1.3% improvement in FLAC and
0.5% in FLAU in the “C23 to C40” scenario. Although the
lower visual quality of C40 videos typically impacts detec-
tion, our method consistently enhances per-face frame-level
detection by an average of 4.8% in “C23 to CO” and 1.1% in
“C23 to C40”, thanks to the integration of four contextual
feature modules.

2. Effects of human factors

Our method leverages human-inspired features, so it is cru-
cial to assess detection performance when these factors
are removed. Our method contains four modules, i.e., the
Spatial-Temporal module (M1), Pixel-Wise module (M2),
Gaze module (M3), and Body-Face module (M4). These
modules are related to different human factors. For M1, the
temporal component is inspired by the human observation
of inconsistencies across frames. In M2, the face compari-
son element is based on how humans compare faces within a
frame to detect abnormalities. Both M3 and M4 are entirely
driven by human insights, focusing on gaze inconsistencies
and age/gender mismatches.

To evaluate the impact of these human factors, during
our ablation studies, we exclude the temporal component
from M1, the comparison element from M2, and both M3
and M4, respectively. As shown in Table 2, removing these
elements results in degraded detection performance. When
using the original group inference network [4] without our
custom designs, the performance significantly decreases.
These findings demonstrate that human-inspired features
and our specific designs enhance detection performance.

3. Effects of different baseline networks

We utilize a group inference network [4] for training, with
its default backbone, VGG [3], to extract features relevant
to each module. To assess the impact of different backbone

networks, we experiment with VGG [3], ResNet [1], and
Xception [2]. As shown in Table 3, the choice of backbone
network has a slight influence on detection performance,
likely because our human-inspired features are effectively
extracted by all three networks. ResNet slightly outper-
forms VGG and Xception.

4. Effects of different fusion strategy

We employ the XOR fusion method to integrate the outputs
of the four detection modules. It is crucial to assess the im-
pact of different fusion strategies on detection performance.
Specifically, we evaluated three strategies: AND operator
fusion, average fusion, and XOR operator fusion.

In the AND operator fusion, a face is classified as fake
only if all modules detect it as fake. In the average fusion,
a face is classified as fake if the average score from the four
modules indicates it is fake. Lastly, in the XOR operator
fusion, a face is classified as fake if any one of the four
modules detects it as fake.

The results, as shown in Table 4, demonstrate that the
XOR operator fusion strategy yields the best detection per-
formance. The AND operator fusion and average fusion
strategies fall short primarily because the gaze and face-
body modules capture features that the spatial-temporal and
pixel-wise modules do not. Consequently, we adopt the
XOR fusion strategy in our final method.

Furthermore, we evaluate false negative rate: 7.8%
(FFIW), 1.0% (OpenForensics), and 4.4% (DF-Platter).
The lower FNR confirms that ‘XOR’ fusion helps reduce
missed false faces in multi-face detection, improving per-
face frame-level accuracy.

5. Effects of four modules

We conduct experiments using the Spatial-Temporal mod-
ule (M1), Pixel-Wise module (M2), Gaze module (M3), and
Body-Face module (M4) independently. The outputs of M1
and M2 are binary labels, and the outputs of M3 and M4
are binary labels or NA. NA represents a scenario that does
not extract devised gaze or body-face features. The results
are presented in Table 5. While both M1 and M2 achieved
acceptable performance on their own, M3 and M4 did not
perform as well.

The suboptimal performance of M3 is primarily due to
its focus on detecting abnormal gaze patterns, specifically
cases where most individuals are looking at the camera,
while a few are not. This module does not account for



Method C23TO CO C23 TO C40
FLAC FLAU PFAC PFAU FLAC FLAU PFAC PFAU
Xception 86.7 88.3 76.7 77.8 86.2 88.0 72.2 72.9
SBI 96.6 98.5 90.1 91.2 88.6 90.4 70.1 71.3
NoiseDF 90.2 90.6 80.1 82.8 82.0 81.5 68.6 69.4
TALL 94.9 98.6 92.9 93.6 88.3 89.4 72.1 72.6
Lietal. 92.3 93.9 83.9 84.6 83.2 83.8 70.2 70.8
S-MIL 91.4 92.9 79.1 79.6 83.3 84.8 70.4 71.2
Zhou et al. 90.8 91.7 80.2 80.3 84.3 85.5 70.8 71.6
Ma et al. 95.4 96.7 89.4 90.9 87.0 87.7 70.4 71.2
FILTER 96.4 97.8 89.8 90.7 86.8 87.9 71.9 73.6
COMISC 93.5 94.4 89.4 91.3 88.1 89.4 72.0 73.4
Ours 98.0 98.8 95.4 96.3 88.2 90.5 73.2 74.7
Table 1. Comparisons of the cross-compression detection performance on DF-Platter.
. FFIW OpenForencics ~ DF-Platter
Removing human factors
PFAC PFAU PFAC PFAU PFAC PFAU
M1 w/out temporal 86.3 882 93.0 949 90.0 90.5
M2 w/out comparison 89.0 903 944 958 915 928
Whole method w/out M3 and M4 89.7 90.2 953 96.8 919 92.7
Original Group inference network [4] 80.2 82.1 85.5 85.7 82.1 83.7
Whole method 91.3 921 978 989 935 94.6
Table 2. Ablation study - Detection performance in removing human factors.
Network FFIW  OpenForencics DF-Platter Module FFIW OpenForencics ~ DF-Platter
PFAC PFAU PFAC PFAU PFAC PFAU PFAC PFAU PFAC PFAU PFAC PFAU
VGG 90.3 91.2 97.0 984 93.8 944 Ml 87.7 89.0 939 956 904 911
Xception 90.2 91.0 97.2 98.6 93.2 94.3 M2 87.6 89.8 93.3 959 904 915
Resnet 909 914 97.8 988 939 944 M3 69.5 709 787 79.9 722 73.9
M4 62.8 639 671 684 684 69.7
M1+M2+M3+M4 913 921 978 989 935 94.6

Table 3. Ablation study - Detection performance in different net-
works.

FFIW  OpenForencics DF-Platter

PFAC PFAU PFAC PFAU PFAC PFAU
AND Operator 86.3 88.5 93.3 949 90.3 90.6
Average Fusion 88.0 90.2 944 958 91.2 92.6
XOR Operator 91.3 92.1 97.8 989 93.5 94.6

Fusion

Table 4. Ablation study - Detection performance in different fu-
sion strategies.

all possible gaze variations, limiting its effectiveness when
used in isolation. Furthermore, this gaze anomaly pattern
is observed in current multi-face deepfake datasets but may

Table 5. Ablation study - Detection performance in different mod-
ules.

not generalize to all datasets.

We explored the relationship between gazes but found
dataset constraints limited the cue extraction. Specifically,
converging gaze detection of multi-faces requires camera-
related parameters (e.g., distance from the camera), which
are absent in existing multi-face deepfake datasets

Similarly, M4, which detects discrepancies in age and
gender between the face and body, did not achieve strong
results on its own. This is because some manipulated faces
do not exhibit mismatched age or gender, making them de-
tectable by M1 and M2 instead. Although the results in
original manuscripts show M4 contributes to overall perfor-



mance, it is less effective when used independently.

6. Single-face detection comparisons

Method FF++
Xception 96.3
SBI 99.6
TALL 99.9
Zhou et al. 99.5
Ma et al. 95.6
MoNFAP 98.6
Ours 99.5

Table 6. Single-face detection comparisons on FF++ datasets.

Our method can be adapted to single-face scenarios.
Specifically, we modify M1 to extract only spatial-temporal
features and M2 to focus solely on single-face pixel fea-
tures, removing multi-face dependencies. M3 is excluded
as it is not applicable, while M4 remains unchanged. We
evaluate this adaptation on the FF++ [2] dataset. Since FIL-
TER and COMICS rely on multi-face learning and cannot
operate on single-face scenarios directly, their results are
not included here. Although the performance on FF++ be-
comes saturated, the results in Table 6 demonstrate compet-
itive performance in single-face detection.

7. Computational cost

Method FLOPs
Xception 8.1%10°
SBI 8.4 % 10°
NoiseDF 4.7%10°
Liet al. 3.8 % 10°
S-MIL al. 3.1 10'°
Zhou et al. 5.6 % 10'°
Ma et al. 3.9 % 10°
FILTER 6.2 % 10°
COMISC 4.3%10°
M1 8.7 % 10°
M2 1.7 % 100
M3 1.8 % 10°
M4 2.7 % 10°
Ours 3.0 % 10*°

Table 7. Computational cost (FLOPs) of the proposed method.

To assess the computational cost in terms of FLOPs
(Floating Point Operations), we calculate the cost for each
major component of the model. The total FLOPs for the
model are obtained by summing the FLOPs for each layer,

t-SNE Visualization of Deepfake Detection

Figure 2. Visualization of M2.

including convolutional, fully connected, and other opera-
tions.

We utilize Python libraries, such as fvcore, to compute
the FLOPs based on the model architecture and input size.
The results in Table 7 demonstrate that the computational
cost of our method is acceptable. Notably, the FLOPs of
Zhou et al. [5] are higher than those of other methods,
which can be attributed to the use of temporal modules in
approaches, as these temporal modules typically increase
the FLOPs. Overall, the computational cost of HICOM re-
mains manageable for practical applications.

8. Visualization

We visualize the M1 and M2 and show results in Fig. 1 and
Fig. 2. Figures illustrate that the M1 and M2 can detect real
and fake faces effectively. Since M3 and M4 focus on gaze,
age, and body, we provide the accuracy of gaze/age/gender
prediction accuracies of 99.2%,98.6% and 99.7% without
visualizations.
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