
A. Details of Experimental Setup
A.1. Datasets
We evaluate our methods on four real-world image tasks:
CUB, AwA2, WBCatt and 7-point.
• CUB [14]: the Caltech-UCSD Birds-200-2011 (CUB)

dataset, which includes a total of 11,788 avian images
including 4,796 training images 1,198 validation images
and 5,794 testing images. The objective is to accurately
categorize these birds into one of 200 distinct species.
Following [9], we use k = 112 binary bird attributes rep-
resenting wing color, beak shape, etc.

• AwA2 [33]: Animals with Attributes 2 consists of in to-
tal 37,322 images distributed in 50 animal categories. We
use 80% for training, 10% for validation and 10% for test-
ing. The AwA2 also provides a category-attribute matrix,
which contains an 85-dim attribute vector (e.g., color,
stripe, furry, size, and habitat) for each category.

• WBCatt [42]: the White Blood Cell Attributes dataset
includes a total of 10,298 microscopic images from the
PBC dataset [1] with class label, include 6,169 images for
training, 1,030 images for validation and 3,099 images for
testing. Each image is annotated with 11 morphological
attributes (e.g., cell shape, chromatin density and granule
color).

• 7-point [22]: the Seven-Point Checklist Dermatology
Dataset is designed for diagnosing and classifying skin
lesions. It includes 1011 lesion case distribute in 5 diag-
nostic categories. There are 413 samples for training, 203
samples for validation and 395 samples for testing.

CUB AwA2 WBCatt 7-point
Images 11,788 37,322 10,298 1011
Classes 200 50 5 5

Concepts 112 85 31 19

Table 4. Statistics of the datasets used in our experiments.

A.2. Implementation Details
First, we resize the images to an input size of 299 x 299. The
use of different symbols in Section 4 and Figure 2 is to in-
dicate that the two components can employ different back-
bones, highlighting the method’s generality. In our experi-
ments,⌦ and share parameters, and we employ ResNet34
[13] as the backbone to transform the input into latent code,
followed by a fully connected layer to convert it into con-
cept embeddings of size 16 (32 for CUB). During pseudo-
labeling, we also utilize ResNet34 with the KNN algorithm
with k = 2. Additionally, for obtaining concept labels us-
ing a threshold, we set the threshold to 0.6. We set �1 = 1
and �2 = 0.1 and utilize the SGD optimizer with a learn-
ing rate of 0.05 and a regularization coefficient of 5e-6. We

train SSCBM for 100 epochs with a batch size of 256 (for
AwA2, the batch size is 32 due to the large size of individ-
ual images). We repeat each experiment 5 times and report
the average results.

To construct the concept saliency map, we first upsample
the heatmaps {H1,H2, . . . ,Hk} calculated in Section 4.2
to the size H ⇥ W (the original image size). Then, we
create a mask based on the value intensities, with higher
values corresponding to darker colors.

A.3. Impact of Different Backbones
Here, we evaluate the performance of SSCBM and the base-
line using different backbones (ResNet18, ResNet34, and
ResNet50). We present the results in Table 5. We observe
that using ResNet34 as the backbone achieves a significant
performance improvement compared to ResNet18. How-
ever, for ResNet50, its performance is almost on par with
ResNet34, and in some cases, it even performs worse. We
analyze that a possible reason could be that ResNet50 has a
significantly larger number of parameters relative to the rest
of the model, making it difficult to converge simultaneously
with other parts during training, which leads to suboptimal
results. We also note that [9] encounters a similar situation,
where ResNet34 is used as the backbone.

B. Test-time Intervention
For AwA2, there are no grouped concepts, so we adopt in-
dividual intervention. In the CUB, we do the group in-
tervention, i.e., intervene in the concepts with associated
attribution. For example, the breast color::yellow, breast
color::black, and breast color::white are the same concept
group. So, we only need to correct the concept label in the
group. We expect that the model performance will steadily
increase along with the ratio of concept intervention, indi-
cating that the model learned such correct label information
and automatically corrected other labels.

Results in Figure 5 demonstrate our model’s robustness
and an increasing trend to learn the information of concept
information, indicating our interpretability and model pre-
diction performance. Here, we train SSCBM with a label ra-
tio of 0.1 and compare its performance with CEM and CBM
trained on the full dataset. It can be observed that without
any intervention, the task performance of SSCBM is lower
than the accuracy of the supervised model. However, as
the number of intervened concept groups increases, the pre-
diction accuracy of SSCBM gradually improves, eventually
achieving comparable performance to CBM and CEM when
interventions are applied to all concept groups. This lies in
our loss of alignment in effectively learning the correct in-
formation pairs in unlabeled and labeled data.

Here, we present some successful examples of Test-time
Intervention illustrated in Figure 19. The first two on the
left show examples from the CUB dataset. In the top left



(a) CUB

(b) AwA2

Figure 5. Test-time Intervention on CUB and AwA2 dataset.

image, by changing the wing color to brown, we success-
fully caused the model to predict the Great Crested Fly-
catcher instead of the Swainson Warbler. In the bottom left,
because the model initially failed to notice that the upper
part of the bird was black, it misclassified it as Vesper Spar-
row. Through test-time intervention, we successfully made
it predicted the bird was a Grasshopper Sparrow. The results
on the right side of the image are from the AwA2 dataset.
We successfully made the model predict correctly by mod-
ifying concepts at test time. For example, in the top right
image, by modifying the concept of ’fierce’ for the orca, we
prevented it from being predicted as a horse. In the bot-
tom right, we successfully made the model recognize the
bat through the color of the bat.

C. Additional Interpretability Evaluation

We provide our additional interpretability evaluation in Fig-
ure 6 - 13 for CUB dataset, Figure 14 - 16 for WBCatt
dataset, and Figure 17 - 18 for 7-point dataset as follows.
Image regions that are highly relevant to the concept are
highlighted.

D. Limitations
While we solve a small portion of annotation problems by
semi-supervised learning, semi-supervised models may not
be suitable for all types of tasks or datasets. It is more ef-
fective that the data distribution is smooth. However, this is
the limitation of semi-supervised learning, not our methods.

E. Broader Impact
The training of current CBMs heavily relies on the accuracy
and richness of annotated concepts in the dataset. These
concept labels are typically provided by experts, which can
be costly and require significant resources and effort. Ad-
ditionally, concept saliency maps frequently misalign with
input saliency maps, causing concept predictions to corre-
spond to irrelevant input features - an issue related to anno-
tation alignment. In this problem, we propose SSCBM, a
strategy to generate pseudo labels and an alignment loss to
solve these two problems. Results show our effectiveness.
This method has practical use in the real world.



Table 5. Performance of different backbones under different ratios of labeled data.

Dataset Backbone Ratio CBM+SSL CEM+SSL SSCBM
Concept Task Concept Task Concept Task

CUB

ResNet18

K=1 81.69% 7.92% 80.44% 54.90% 87.50% 60.77%
0.05 (K=2) 84.67% 7.46% 83.16% 60.53% 89.16% 64.31%
0.1 (K=3) 85.01% 8.54% 82.46% 59.56% 90.28% 66.76%

0.15 (K=4) 85.17% 10.20% 83.81% 64.27% 90.55% 66.40%
0.2 (K=5) 85.42% 9.70% 84.35% 64.22% 91.02% 68.31%

ResNet34

K=1 83.11% 5.51% 82.36% 59.35% 88.99% 66.72%
0.05 (K=2) 84.51% 8.35% 83.72% 62.20% 90.04% 67.43%
0.1 (K=3) 84.96% 9.84% 84.03% 63.12% 90.88% 67.67%

0.15 (K=4) 85.47% 9.96% 84.30% 64.14% 91.47% 68.36%
0.2 (K=5) 86.67% 16.43% 86.83% 67.64% 92.09 % 70.07%

ResNet50

K=1 81.43% 9.75% 78.99% 57.39% 89.03% 69.59%
0.05 (K=2) 84.49% 8.42% 83.00% 62.12% 90.91% 71.73%
0.1 (K=3) 85.09% 7.97% 83.15% 63.27% 92.10% 74.09%

0.15 (K=4) 85.14% 9.56% 83.32% 64.43% 91.75% 68.50%
0.2 (K=5) 85.39% 10.67% 83.71% 66.09% 93.21% 75.77%

WBCatt

ResNet18

K=1 72.21% 99.45% 73.06% 99.42% 89.07% 99.58%
0.05 (K=62) 80.83% 99.65% 76.75% 99.19% 93.76% 99.55%
0.1 (K=124) 83.33% 99.81% 78.74% 98.87% 93.54% 99.55%

0.15 (K=186) 85.10% 99.84% 82.96% 99.52% 93.83% 99.55%
0.2 (K=247) 84.87% 99.74% 84.11% 99.42% 94.18% 99.58%

ResNet34

K=1 79.06% 99.39% 70.27% 98.64% 91.48% 99.13%
0.05 (K=62) 81.08% 99.48% 73.82% 99.52% 93.53% 99.61%
0.1 (K=124) 85.48% 99.32% 72.25% 99.29% 93.98% 99.68%

0.15 (K=186) 85.39% 99.68% 72.68% 99.58% 94.42% 99.71%
0.2 (K=247) 87.07% 99.74% 74.14% 99.52% 94.42% 99.71%

ResNet50

K=1 71.30% 99.71% 72.99% 99.48% 88.46% 99.71%
0.05 (K=62) 82.69% 99.45% 69.74% 99.35% 93.73% 99.61%
0.1 (K=124) 81.23% 99.71% 72.22% 98.32% 93.99% 99.55%

0.15 (K=186) 82.97% 99.74% 87.17% 99.23% 94.32% 99.71%
0.2 (K=247) 84.40% 99.84% 85.03% 99.77% 94.47% 99.61%

7-point

ResNet18

K=1 56.08% 56.46% 56.30% 61.52% 58.19% 64.56%
0.05 (K=5) 63.58% 59.75% 64.32% 62.28% 67.24% 66.08%
0.1 (K=9) 65.78% 63.29% 66.65% 64.30% 71.03% 68.61%

0.15 (K=13) 67.71% 63.54% 67.02% 67.34% 73.34% 69.87%
0.2 (K=17) 69.54% 57.22% 68.79% 63.80% 75.02% 70.63%

ResNet34

K=1 59.91% 55.95% 62.78% 66.09% 66.58% 66.84%
0.05 (K=5) 65.36% 57.47% 67.85% 67.09% 70.98% 68.77%
0.1 (K=9) 68.82% 55.70% 72.23% 66.33% 73.67% 70.09%

0.15 (K=13) 66.14% 59.75% 66.54% 67.09% 73.94% 72.56%
0.2 (K=17) 70.29% 55.44% 73.04% 66.84% 76.52% 74.56%

ResNet50

K=1 55.95% 64.81% 56.46% 64.56% 59.89% 64.30%
0.05 (K=5) 62.80% 60.00% 64.66% 66.08% 69.29% 66.84%
0.1 (K=9) 65.14% 60.25% 66.48% 67.34% 68.54% 64.56%

0.15 (K=13) 69.15% 57.47% 67.94% 66.33% 73.58% 67.85%
0.2 (K=17) 71.03% 58.73% 67.97% 67.09% 74.27% 64.05%



Figure 6. Concept saliency map on CUB dataset (bobolink) shows reasonable localization of the ground truth concept regions.

Figure 7. Concept saliency map on CUB dataset (cape glossy starling) shows reasonable localization of the ground truth concept regions.

Figure 8. Concept saliency map on CUB dataset (elegant tern) shows reasonable localization of the ground truth concept regions.

Figure 9. Concept saliency map on CUB dataset (heermann gull) shows reasonable localization of the ground truth concept regions.

Figure 10. Concept saliency map on CUB dataset (horned puffin) shows reasonable localization of the ground truth concept regions.



Figure 11. Concept saliency map on CUB dataset (nashville warbler) shows reasonable localization of the ground truth concept regions.

Figure 12. Concept saliency map on CUB dataset (slaty backed gull) shows reasonable localization of the ground truth concept regions.

Figure 13. Concept saliency map on CUB dataset (white necked raven) shows reasonable localization of the ground truth concept regions.

Figure 14. Concept saliency map on WBCatt dataset (neutrophil) shows reasonable localization of the ground truth concept regions.

Figure 15. Concept saliency map on WBCatt dataset (lymphocyte) shows reasonable localization of the ground truth concept regions.



Figure 16. Concept saliency map on WBCatt dataset (monocyte) shows reasonable localization of the ground truth concept regions.

Figure 17. Concept saliency map on 7-point dataset (congenital nevus) shows reasonable localization of the ground truth concept regions.

Figure 18. Concept saliency map on 7-point dataset (melanoma female) shows reasonable localization of the ground truth concept regions.
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Figure 19. Examples of Test-time Intervention.
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