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7. Color Bias Analysis
We can observe that shadows in most images tend to appear
bluish. This occurs because when an object blocks sunlight,
the primary light source in the shadow area becomes the light
scattered from the sky, which has shorter wavelengths and
typically appears blue [7, 40]. Additionally, the color of the
shadow is influenced by surrounding objects due to diffuse
reflection. In Fig. 3 of the main manuscript, we present the
color shift statistics of shadow regions in different datasets.
Specifically, the color bias is obtained by subtracting shadow
regions’ reflectance map of the input from its GT counter-
part. Through statistical analysis, we confirm the blue-red
color shift in shadow regions (note that these statistics are
primarily derived from outdoor scenes; in other complex
scenarios such as indoor environments, the color bias may
exhibit different distributions due to the influence of object
surface colors); this observation guides our decomposition
strategy as elaborated in the main manuscript.

8. Implementation Details
Our ShadowHack is implemented in Python with the Py-
Torch framework and is trained using NVIDIA RTX4090
GPUs. We utilize the AdamW optimizer with momentum
set to (0.9, 0.999) and a weight decay of 10−2. The ini-
tial learning rate is set to 2 × 10−4 and decays to 10−6 at
the schedule’s end in a cosine annealing manner. During
training, we randomly crop the training data into patches
of size 384×384, and apply data augmentation techniques,
including rotation, flipping, mixup, and color jittering as
in previous works [13, 32]. The input image is decoupled
into the luminance and color components through a con-
version from RGB color space to YCbCr color space via
Kornia. For the LRNet, we set batch size to 4 and total
iterations to 400k on the ISTD+ [27] dataset, while batch
size to 8 and total iterations to 300k on the SRD [43] dataset.
For the CRNet, the batch size is set to 4 for both datasets
and trained for 100k iterations. Following most of the pre-
vious arts [13, 32, 33, 53, 65], we test our mode with full-
resolution inputs and only resize the outputs for 256×256 to
make a fair comparison with previous methods when evaluat-
ing. For the base network of each stage, we use a four-layer
encoder-decoder structure (from L1 to L4), consisting of
three downsampling and three upsampling operations. The
dimension of the first layer is 32. In the LRNet, our RTA
modules are integrated into L3 and L4, with an overlapping
ratio set to 0.5 and a rectified mechanism λ0 value of 0.7.
For the CRNet, we bring a color encoder on the top of the U-
shape network. The color encoder is an FC-MAE pretrained

λ0 0.5 0.6 0.7 0.8

PSNR 33.77 33.78 33.89 33.71

Table 5. Ablation study of λ0 on the ISTD+ dataset. Here we
calculate PSNR on the luminance with full resolution.

atto variant of ConvNext-v2, with merely 2M parameters.
Suggested by [58], in Eq. 10 of the main manuscript, λ

can be re-parameterize by:

λ = exp(λ1
1 · λ2

1)− exp(λ1
2 · λ2

2) + λ0, (11)

where λj
i , i, j ∈ {1, 2} and λ0 are learnable and predefined

parameters, respectively. λ0 is set to 0.7 according to Tab. 5.

9. Failure Case Analysis

Multiple checkpoint training utilizes outputs from both pre-
mature and peak performance checkpoints of LRNet. It
creates robustness for CRNet against failures in LRNet’s
Y prediction. The ConvNext-v2 color encoder further pro-
vides rich semantic clues, enabling the identification of same-
object regions and referencing their respective colors. Fig. 12
shows CRNet adapting to up to 50% contamination in Y
failures (contaminated by mixing input Y with LRNet’s Y
prediction). However, complete Y prediction failure (e.g.,
in extreme out-of-distribution scenarios) still impairs final
shadow removal.

Figure 12. Generalization analysis for Failed Y Prediction

10. Additional experiment on ISTD Dataset

ISTD comparison as in Tab. 6. Our method achieves the
best performance on all metrics. We will add this to the
supplementary in the next revision.

Method SF’23 RASM’24 HF’24 OmniSR+GM’25 Ours

PSNR↑ 32.21 32.32 32.02 31.56 33.15
SSIM↑ 0.968 0.968 0.968 0.965 0.968
RMSE↓ 4.09 4.12 4.24 - 3.80

Table 6. Quantitative results on the ISTD dataset.
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Figure 13. The decoupling model of Retinex-based framework.

11. Architectures of Extension Experiments

11.1. Ablation Study of Decoupling Framework

During the ablation study on our decoupling framework,
we explore the end-to-end network and the Retinex-based
framework. For the end-to-end network, we adopt the same
baseline as our models. With an input concatenated by RGB
images and its shadow masks, the network outputs shadow-
free images directly. For the Retinex-based experiment, we
first decompose the image to its illumination map and re-
flectance map. As shown in Fig. 13, the decomposing model
consists of a U-Net [44] and is trained with the loss function
of L1 loss and WTV loss [17]. We obtain illumination maps
from the U-Net and their reflectance maps via division. Sub-
sequently, we relight the illumination and remove the color
bias in reflectance with the same architecture as LRNet.

11.2. Mask Refine Network

We make corrupted masks inspired by shadow counterfeit-
ing in SILT [56], including expansion, corrosion, noise and
distraction generated by random polygons. The mask refine
network simply adopts a U-Net in Fig. 13. We take It and
shadow mask as inputs and the refined mask will be gener-
ated. Considering the complexity of shadow characteristics,
we inject ConvNext-v2 atto model [37] as our CRNet does.
The extracted features of RGB inputs are fed into the U-Net
decoder for a more precise mask.

Please note that we did NOT use mask refinement in
any COMPARISON with competitors to keep it fair. It
is only used in Sec. 5.4 of the main manuscript to show
robustness and address handling inaccurate masks in real-
world scenarios.

12. Comparison of Model Size

As shown in Tab. 7, we provide the total size of our models
compared with state-of-the-art models. Our method achieves
the best performance with a comparable parameter count.

Method Params (M) PSNR↑ RMSE↓
ShadowFormer [13] 11.4 32.90 4.04
ShadowDiffusion [14] 55.2 34.73 3.63
Li et al. [30] 23.9 33.17 3.83
DeS3 [24] 113.7 34.11 3.72
RASM [32] 5.2 34.46 3.37
Liu et al. [34] 117.9 33.48 3.66
Homoformer [53] 17.8 35.37 3.33
OmniSR+GM [55] 360.2 34.56 -
Ours 23.3 35.94 2.90

Table 7. Comparisons of model size and performance on the SRD
dataset with state-of-the-art methods.

13. More Visual Results
We display more visual comparisons on the ISTD+ [27] and
SRD [43] datasets in Figs. 14, 15, 16 and 17. Additionally,
Fig 18 brings extra UIUC and UCF datasets results.

14. Flexible Shadow Removal
We evaluate our model with flexible shadow masks, as shown
in Fig. 19, which demonstrates the high flexibility of our
model in removing shadows based on user-specified masks.



(a) Input (b) BMNet [65] (c) SG [47] (d) SF [13]

(e) HF [53] (f) RASM [32] (g) Ours (h) GT

(i) Input (j) BMNet [65] (k) SG [47] (l) SF [13]

(m) HF [53] (n) RASM [32] (o) Ours (p) GT

Figure 14. Visual comparisons on the ISTD+ dataset.



(a) Input (b) BMNet [65] (c) SG [47] (d) SF [13]

(e) HF [53] (f) RASM [32] (g) Ours (h) GT

(i) Input (j) BMNet [65] (k) SG [47] (l) SF [13]

(m) HF [53] (n) RASM [32] (o) Ours (p) GT

Figure 15. Visual comparisons on the ISTD+ dataset.



(a) Input (b) BMNet [65] (c) SG [47] (d) DMTN [33]

(e) DeS3 [24] (f) HF [53] (g) Ours (h) GT

(i) Input (j) BMNet [65] (k) SG [47] (l) DMTN [33]

(m) DeS3 [24] (n) HF [53] (o) Ours (p) GT

Figure 16. Visual comparisons on the SRD dataset.



(a) Input (b) BMNet [65] (c) SG [47] (d) DMTN [33]

(e) DeS3 [24] (f) HF [53] (g) Ours (h) GT

(i) Input (j) BMNet [65] (k) SG [47] (l) DMTN [33]

(m) DeS3 [24] (n) HF [53] (o) Ours (p) GT

Figure 17. Visual comparisons on the SRD dataset.



(a) Input (b) SG [47] (c) SF [13] (d) HF [53] (e) Ours

Figure 18. Visual comparisons on the UIUC and UCF datasets.



(a) Input (b) Shadow Mask (c) Result

Figure 19. Visual results of selected shadow masks on the UCF dataset.
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