Sat2City: 3D City Generation from A Single Satellite Image with Cascaded
Latent Diffusion

Supplementary Material

6. More Technical details

6.1. Implementation Details

Our method is primarily implemented based on the sparse
3D structure provided by XCube [39] and the surface fit-
ting network from NKSR [20]. For VAE training, we use 4
Nvidia A800-SXM4-80GB GPUs, while only the diffusion
of dense and sparse geometric latent grids is trained across
all 4 GPUs; Each layer of the multi-level appearance latent
grids is trained on 2 GPUs. The inference process takes
approximately 1 minute on a single A800 GPU, while the
appearance-mesh extraction takes around 20 seconds for
a resolution of 5123, The training objectives for the two
VAEs—dense geometry and re-hashed appearance—are de-
fined as Lp and Lg, respectively:

£\6AE = E{G,AN} [NEXDngd [)\()BCE(G, é)-i-

ML (AN, AN+

MEL(e, (X0) | 0ol
£¥AE = E{GA,ANJ;LC}[]EXSNQES [)‘OBQE(G’ G)+

ML (AN, AN) + A3L1 (Pe, Po)|+
A2KL(ge, (Xs) || p(Xs))],

where BCE(-) represents the binary cross-entropy for grid
occupancy, and £ denotes the L1 loss. Notably, the KL di-
vergence KIL(- || -) is only computed for X and Xg, and
not for X¢,,. Compared to geometric attributes, appear-
ance attributes often exhibit greater variability and diver-
sity. Introducing KL divergence directly in material learn-
ing may overly constrain the model, thus limiting the di-
versity and flexibility of material features. The training
procedure for 3D latent diffusion follows the same struc-
ture for all bottleneck grids using v-parameterization [42]
and the backbone from [12], with its 3D variant imple-
mented by [39]. In practice, we set level n = 4, dual train-
ing starting epoch as £ = 10, and the weighting factors
are\g = 20, A1 = 50, Ay = 0.03, A3 = 50.

6.2. Details on Cascaded Latent Diffusion

Our method adopts a cascaded latent diffusion pipeline
to generate structured 3D cities with hierarchical geom-
etry and appearance refinement. The pipeline follows a
three-stage process: (1) dense geometry latent diffusion, (2)
sparse geometry latent refinement, and (3) hierarchical ap-
pearance decoding:

Dense latent diffusion conditioned on height field. Infer-
ence begins by conditioning on a height map-derived point
cloud, which serves as the structural prior for generation.

A point encoder first maps the point cloud to voxel indices,
extracts features via ResNet blocks, and aggregates them
using max-pooling. The unordered point cloud features are
then transformed into a structured voxel-based condition-
ing signal for subsequent encoding. The condition encoder
further refines this representation by extracting hierarchi-
cal geometric features from sparse voxel grids using multi-
scale sparse convolutions. Finally, the encoded condition la-
tent grids are projected to match the resolution of the dense
feature grid and concatenated with it for joint iterative de-
noising. The optimized dense latent diffusion is processed
through the dense VAE decoder, generating the first-level
sparse grid output (/st grid).

Sparse latent diffusion condition on decoded dense la-
tent. The sparse latent diffusion serves as a bridge between
geometry and appearance representations. It utilizes the
1Ist grid to fit a sparse latent volume, facilitating finer-grain
surface representation. Crucially, the sparse latent grid de-
coder records voxel pruning decisions at each upsampling
step, guiding structured pruning during appearance decod-
ing. This ensures consistency, as the appearance VAE does
not explicitly encode geometric distributions.

Re-Hash latent diffusion condition on pruning deci-
sion from sparse latent decoder. The pruning decisions
are subsequently leveraged to guide the upsampling pro-
cess during appearance decoding, ensuring that the finest-
level appearance feature grid maintains a consistent ge-
ometric structure with sparse latents at each upsampling
step of the appearance decoder. By propagating these de-
cisions, coarser-level appearance features (re-hashed from
the finest-level) can dynamically adjust their voxel selection
strategy based on the most refined masked voxel decisions.
Specifically, at the bottleneck stage, the finest-level appear-
ance feature grid undergoes a re-hashing process, generat-
ing multiple coarser levels. During each upsampling step,
these coarser levels are iteratively refined by adapting to
the pruned voxel structure defined by the finest-level grid.
Rather than being naively upsampled, each coarser level is
re-fitted to the structural surface, ensuring alignment with
the progressively pruned geometry at that specific stage of
upsampling. This hierarchical conditioning ensures spa-
tial coherence and tightly constrains the appearance latent
around the defined surfaces.

Once the geometry structure is established, the multi-
level appearance latents are decoded by performing trilinear
interpolation over the inferred geometry vertices. The in-
terpolated latent features across all levels are concatenated

Figure 13. Height Map Rendering in Blender.

and processed through an MLP-based output head to gen-
erate per-vertex appearance attributes, ensuring spatial con-
sistency across the generated 3D scene.

Diffusion model with parameter . A widely adopted
forward diffusion step (adding noise) is given by:

X[X1 ~ N(V1 = B Xi—1, Bed), (3

where the noise variance J; is small, ensuring gradual cor-
ruption of data over 1" diffusion steps. The reverse process
attempts to denoise X; progressively, ultimately restoring
the original data distribution. It is parameterized as:

1—ay
X1 |Xg ~ N (g (X, 1), 172_51@1)7 9)
-y
where ay = 1 — 5, and &y = Hi:o as. The mean py is
parameterized by a learnable neural network. In practice,
We re-express [ig, using:

Qi
By = Vo Xy —Bt\/ 1 i ; Vo, (10
— 0y

where the network is trained to predict v instead of the
noise, following the v-parameterization strategy, which has
been found to improve optimization stability. Following
XCube, the vy (+) is tailored for our sparse representations
based on the one that was originally proposed for dense im-
age space [12].

6.3. Details on Dataset Height Map Construction

We employ a procedural shading technique using a height-
dependent grayscale gradient (Figure 17). The shading
process is implemented within the Blender shading node,
leveraging a combination of procedural texture coordinates,
channel separation, and color mapping.

Coordinate-Based Height Extraction We begin by ex-
tracting the generated texture coordinates of the city mesh
using the Texture Coordinate node. This provides a spatially
varying reference frame that adapts dynamically to the ge-
ometry. The coordinate vector is subsequently decomposed
into its components (X, y, z) through a Separate XYZ node,
isolating the vertical height z for use in the shading compu-
tation.

Height-Driven Color Mapping The extracted height infor-
mation is passed through a Color Ramp node, which maps
height values to a grayscale color gradient. This mapping
is crucial for simulating height-based shading variations,
where lower buildings are rendered darker, and higher struc-
tures receive lighter intensities, mimicking ambient occlu-
sion and environmental exposure effects.
Physically-Based Material Composition The resulting
color gradient is then fed into the Base Color input of a
Principled BSDF shader. This shader governs the mate-
rial’s light interaction properties, maintaining a physically
consistent representation of urban structures. For enhanced
realism, the roughness is set to 1.0 (diffuse reflection), and
metallic properties are disabled to simulate non-reflective
building surfaces.

7. Discussion

Limitations. The evaluation of our approach on real-world
datasets remains pending, as obtaining high-resolution col-
orized point clouds precisely aligned with remote sensing
elevation maps necessitates considerable resource alloca-
tion and may encounter limitations in data availability and
dissemination.

Spoiler alert. We developed an automated pipeline lever-
aging Google Earth Engine and the Google Maps Platform
to retrieve (i) high-resolution satellite imagery and (ii) co-
registered photorealistic 3D Tiles for identical geographic
bounding boxes. Figure 14 shows several such samples, and
we have already begun constructing a large-scale dataset.

We evaluated the data processing workflow—comprising
API-based data acquisition, point cloud conversion, and
height map inference—on several commercially available
desktop PCs. The complete pipeline requires approximately
10 minutes per scene, indicating that large-scale data col-
lection is practically achievable within a standard academic
laboratory environment.

As an initial step toward evaluating Sat2City’s gen-
eralizability, we fine-tuned Depth Anything [62] on a
dataset comprising real-world height maps and correspond-
ing satellite imagery [57]. We inferred the scenes shown
in Figure 14. Quantitatively, we computed the Chamfer
Distance between point clouds derived from height maps
and their colorized ground truth, yielding 0.2909 for syn-
thetic data (Sat2City dataset) and 0.0977 for real-world
data (Google Earth), both averaged over seven randomly

Figure 14. Real-world dataset includes diverse morphologies.

Height map estimated Disthbunon
from satelite image Visualization

Colorized
point cloud

Distribution
Visualization

Figure 15. Raw data example for one scene in Figure 14.

selected scenes. Qualitatively, Figure 15 (real) illustrates
that the height map distribution in the real-world dataset ex-
hibits greater overall consistency with the colorized point
clouds compared to its synthetic counterpart shown in Fig-
ure 3 (synthetic). These results suggest that real-world data
is unlikely to introduce generalization problems and may
even improve the quality of generation.

Future works. Although contributing an additional real-
world dataset is beyond the scope of this submission, as
concurrent works (SynCity [13] and NuiScene [25]) like-
wise validate only on synthetic data, we plan to explore it
in future work fully. Nevertheless, our findings underscore
both the necessity and the promise of building real-world
datasets to push this research direction forward. We also
hope our work will inspire a series of follow-up studies in
the remote sensing community to explore the model’s lim-
itations and possible improvements on such a real-world
dataset—examining, for example, its performance in var-
ious urban environments (e.g., diverse terrains, or mixed
vegetation and building layouts), at different remote sens-
ing resolutions.

8. More About Evaluations

8.1. User Study Settings

Table 4 presents our user study design, where participants
were instructed to rate images based on the provided ques-
tions. The evaluation follows a 10-point scale, where 1
indicates “Very Poor” and 10 represents “Excellent.” For
each sample, participants answered two questions—either
texture-based or geometry-based—ensuring a comprehen-
sive assessment of both perceptual quality and structural fi-
delity.

Metric User Study Question

TPQ How would you rate how the scene looks overall?
Think about the details, the textures, and how realis-
tic it seems to you.

TSC How well do you think the shapes and structure of
the scene are represented? Does the geometry look
accurate and complete?

GPQ How would you rate how the scene looks overall?

Think about the details, the textures, and how realis-
tic it seems to you.

GSC How well do you think the shapes and structure of
the scene are represented? Does the geometry look
accurate and complete?

Table 4. User study metrics and evaluation questions.

i
i
i
!

g s

Figure 16. Orthographic camera view for synthetic satellite im-
agery and building distribution.

8.2. Texture Evaluation.

Our evaluation of the generated textures is limited to quali-
tative visual analysis, primarily because this work does not
involve any neural rendering components that produce 2D
images. Moreover, standard 2D generation metrics such as
FID or KID are not applicable for assessing cross-modal
outputs—namely, the input colorized point cloud and the
resulting textured mesh.

8.3. More Dataset & Generation Snapshots

—_—
o)
9
g
<=
w2
9]
=
el
51
<]
&n
X
2]
9]
o
-
w
h=
]
—
]
=}
£
an
=
o
Q
g
&n

Figure 18. More views on the entire sampled point cloud.

gure 17. Explorin

Fi

(2) Collection | City_23_0:

2.

Figure 19. More views on zoomed-in sampled point cloud.

Figure 20. More results.

	Introduction
	Related Works
	Method
	Triplet Bottleneck VAE
	Conditional Cascaded 3D Latent Diffusion
	Sat2City Dataset

	Experiments
	Evaluation Protocols
	Comparison
	Ablations

	Conclusion
	More Technical details
	Implementation Details
	Details on Cascaded Latent Diffusion
	Details on Dataset Height Map Construction

	Discussion
	More About Evaluations
	User Study Settings
	Texture Evaluation.
	More Dataset & Generation Snapshots

