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A. Additional Results

Qualitative Comparison on Avatar Reposing. As
shown in Fig. A1, direct deformation of characters from the
reconstruction results in input poses could fail on body parts
and clothing due to self-contact and self-occlusion. Directly
generating the reposed 3DGS avatar GPt

by AdaHuman
could better generalize to a novel target pose Pt, synthe-
sizing realistic details of the deformation of the clothe.

Animating Standard Pose Avatars. Fig. A2 showcases
the animation results of using the animatable avatar from
Avatar Reposing with a standard pose condition. Although
the model is not directly trained with standard pose data, it
learns to generalize to the standard poses with the help of
the diverse distribution of poses in MVHumanNet[11].

B. Limitations and Future Directions

Despite the advancements, some limitations of our method
warrant further exploration. The local refinement strategy
may encounter difficulties with occluded or poorly covered
regions, particularly around hands and arms, leading to ar-
tifacts and limiting fine-grained animation in these areas.
Additionally, while our model can generate avatars in an
animation-friendly standard pose, the animation capability
still relies on the alignment of the SMPL body models and
their skinning weights, which poses challenges in detailed
animation such as facial expressions, hand gestures, and
garment deformation. Future work could explore better in-
tegration of body models and simulation-based methods, as
well as the use of video diffusion model to enhance the an-
imation quality.

C. Implementation Details

Network Structure. In Fig. A3, we illustrate the archi-
tecture of our Pose-Conditioned Multi-View Image LDM
model, along with the 3DGS generators G and Gcomp. For
the LDM model, following [3], we enable 3D cross-view

attention only in layers with a feature map resolution of
≤ 32 × 32. We also add extra input channels to the la-
tent maps for camera ray maps, condition masks, and se-
mantic pose maps. For G, we adopt the architecture of the
pre-trained LGM-big model [9] and include additional input
channels for noisy images xt.

Additional, as an ablation mentioned at ??, we hvae tried
training a compositional 3DGS generator Gcomp for Learn-
able Composition. Based on the LGM network, we insert
an additional cross-part self-attention layer after each orig-
inal cross-view self-attention layer in the LGM network.
Note that the output image resolution of our LDM model
is 512× 512, which is then downsampled to 256× 256, the
input resolution for the 3DGS generator G.

Ray Map Embedding. We use different methods to em-
bed ray map information for the image LDM model and the
3DGS generators G and Gcomp. For the 3DGS generators,
to effectively utilize the pretrained weights of LGM, we
scale the entire scene to ensure a camera distance of r = 1.5
meters and use Plücker ray embeddings as described in Eq.
4 of the main text.

For the LDM model, we employ sinusoidal positional
embeddings [10] to encode ray origins and directions, pro-
viding rich information about 3D locations across different
cropping scales:

RLDM(i, j) = PE(o(i, j),d(i, j)) (1)

where PE is the sinusoidal positional encoding function,
with the number of octaves Noctaves set to 8.

View Sampling. Since our training data consists of multi-
camera video captures in a 3D scene, the avatar is not al-
ways positioned at a standard location. We use 2D joint lo-
cations and foreground mask areas to crop global and local
training views, resizing them to a resolution of 512 × 512.
In Tab. 1, we list the OpenPose joints used to determine the
cropping centers and relative size ratios of the local crops.
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Input AdaHuman (Ours) AdaHuman + Deform SIFU (SMPL-based Deformation) Ground-truth Reference

Figure A1. Qualitative comparison on novel pose synthesis task.

Input Standard Pose 3DGS Avatar Animation with Unseen Input Motion

Figure A2. AdaHuman generates animation-ready avatar in a standard pose, which can be animated with unseen input motion.

During inference, after obtaining coarse reconstruction re-
sults with global views, we render Nv = 20 views to esti-
mate 3D joints using EasyMocap [1], which helps sample
local views for our compositional 3DGS refinement.

Parts Full body Upper Body Lower Body Head
Joints Pelvis Neck Left Ankle, Right Ankle Left Ear, Right Ear
Scale 1.0 0.5 0.5 0.25

Table 1. Body part sampling details.

Training Schedule. We initialize our LDM model with
the official weights of stable-diffusion-v1-51 [8]
and our 3DGS generator G with LGM-big2 [9].

For training the LDM model weights θ, the model first
learns to predict K = 3 canonical views from one input
view (V = 1) without pose conditioning. We fine-tune
the model on predicting global full-body views for 20, 000
iterations, followed by fine-tuning on all Np + 1 = 4
global and local view for another 30, 000 iterations to obtain
θno pose. Finally, we fine-tune the pose-conditioned model
weights θnovel pose from θno pose. This model learns to pre-
dict K = 4 canonical views of a novel pose avatar from
V = 1 input views sampled from different frames in the

1https://huggingface.co/stable-diffusion-v1-5/
stable-diffusion-v1-5

2https://huggingface.co/ashawkey/LGM/resolve/
main/model_fp16_fixrot.safetensors

same video sequence. The novel pose synthesis model is
fine-tuned for 1, 0000 iterations using all Np+1 = 4 global
and local views.

For training the 3DGS generator model G, we first fine-
tune it from pre-trained weights using clean full-body im-
ages in MVHumanNet [11] for 2, 000 iterations to adapt
it for human reconstruction. Then, we randomly sample
diffusion timesteps to train with both noisy inputs xt and
clean inputs x0 for 20, 000 iterations. The 3DGS model G
is also fine-tuned on local views for an additional 20, 000
iterations. We use Nref = 12 reference views of each part
to supervise the predicted 3DGS.

All training processes are conducted on 16 NVIDIA
A100 80GB GPUs, with a total batch size of nbatch = 128
and a learning rate of η = 5× 10−5.

Training Losses. The training losses for the pose-
conditioned LDM and the 3DGS generator are as follows:

LLDM = LMSE(ϵ, ϵθ) (2)
LG = Lrecon + λregLreg (3)

Lrecon = λMSELMSE(x̂
t→0
novel,xnovel)

+ λLPIPSLLPIPS(x̂
t→0
novel,xnovel)

(4)

where the training loss of LDM, denoted as LLDM, is the
MSE loss of the predicted latent noise. The training loss of
G consists of rendering reconstruction loss computed using



Figure A3. Network Architectures of (1) Pose-Conditioned Multi-View LDM Model and (2) Compositional 3DGS Generator.

MSE and LPIPS. Following [12], we also incorporate the
3DGS regularization loss from [6, 14] to enhance surface
quality.

Inference. This section details the inference pipeline of
avatar reconstruction and avatar reposing our method. In
both settings, we perform 3D joint diffusion on global
views only when t ∈ (500, 900] to maintain the stability
of the diffusion process. The earlier steps focus on pure
2D diffusion to generate more detailed appearances. Dur-
ing image-to-image local refinement, we utilize SDEdit [7]
with a strength of s = 0.5, meaning that denoising be-
gins at t = 500 and 3D joint diffusion is performed when
t ∈ (350, 500].

D. Evaluation Settings

Baseline Models. Our baseline methods, including Hu-
man3Diffusion [12], LGM [9], SiTH [5], and SIFU [15],
have been trained on various 3D mesh datasets [2, 4, 13]. In
this work, our aim is to demonstrate the advantages of train-
ing models on both mesh datasets and video datasets for
better pose generalization and the synthesis of novel pose
characters. We utilize their official weights for comparison.
We also note that some models (e.g. [12]) rely on private
data or synthesized meshes for training.

Avatar Reconstruction. We selected front views of the
mesh avatar as input views, rendered by horizontal perspec-
tive cameras for a fair and realistic comparison. The results
of the quantitative evaluation are rendered at a resolution of
1024× 1024 using 20 perspective cameras.

Avatar Reposing. For SiTH [5] and SIFU [15], we de-
form their avatars to the target pose and align the avatar
meshes with the ground-truth SMPL meshes to render im-
ages for evaluation.

References
[1] Easymocap - make human motion capture easier. Github,

2021. 2
[2] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,

Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 13142–13153, 2023. 3

[3] Ruiqi Gao*, Aleksander Holynski*, Philipp Henzler, Arthur
Brussee, Ricardo Martin-Brualla, Pratul P. Srinivasan,
Jonathan T. Barron, and Ben Poole*. CAT3D: Create any-
thing in 3d with multi-view diffusion models. In NeurIPS,
2024. 1

[4] Hsuan-I Ho, Lixin Xue, Jie Song, and Otmar Hilliges. Learn-
ing locally editable virtual humans. In CVPR, 2023. 3

[5] Hsuan-I Ho, Jie Song, and Otmar Hilliges. Sith: Single-
view textured human reconstruction with image-conditioned
diffusion. In CVPR, 2024. 3

[6] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. In SIGGRAPH. Association for Com-
puting Machinery, 2024. 3

[7] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided
image synthesis and editing with stochastic differential equa-
tions. In ICLR, 2022. 3

[8] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2



[9] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang,
Gang Zeng, and Ziwei Liu. LGM: Large multi-view gaus-
sian model for high-resolution 3d content creation. In ECCV,
2025. 1, 2, 3

[10] A Vaswani. Attention is all you need. Adv. Neural Inform.
Process. Syst., 2017. 1

[11] Zhangyang Xiong, Chenghong Li, Kenkun Liu, Hongjie
Liao, Jianqiao Hu, Junyi Zhu, Shuliang Ning, Lingteng Qiu,
Chongjie Wang, Shijie Wang, et al. MVHumanNet: A large-
scale dataset of multi-view daily dressing human captures.
In CVPR, 2024. 1, 2

[12] Yuxuan Xue, Xianghui Xie, Riccardo Marin, and Gerard
Pons-Moll. Human 3diffusion: Realistic avatar creation via
explicit 3d consistent diffusion models. In NeurIPS, 2024. 3

[13] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qiong-
hai Dai, and Yebin Liu. Function4d: Real-time human vol-
umetric capture from very sparse consumer rgbd sensors. In
IEEE Conf. Comput. Vis. Pattern Recog., 2021. 3

[14] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient adaptive surface reconstruction in
unbounded scenes. ACRM Trans. Graph., 2024. 3

[15] Zechuan Zhang, Zongxin Yang, and Yi Yang. SIFU: Side-
view conditioned implicit function for real-world usable
clothed human reconstruction. In CVPR, 2024. 3


