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In this supplementary material, we first state the limita-
tions of the proposed method and potential future work in
Section A. Next, we provide more details on the method’s
application in Section B. After that, additional main com-
parative experiments with more models are discussed in
Section C. Furthermore, we present additional ablation ex-
periments in Section D. Finally, the visualization of chat
generation is shown in Section E.

A. Limitations and Future Works
In performing dynamic allocation of the layer-wise com-

pression budget, the proposed method requires obtaining
the strength and skewness of the importance distribution of
visual tokens for all layers before determining the allocable
budget for each layer. This necessitates storing the complete
KV cache after the prefill stage and executing the reduc-
tion only once the final compression budget is determined.
Consequently, the proposed method is at a disadvantage in
terms of peak memory consumption, a challenge also faced
by most hierarchical budget allocation methods. Address-
ing how to maintain a peak memory advantage while sup-
porting dynamic allocation of budgets across layers will be
a key focus of our future work. In parallel, we will con-
tinue to explore the information flow mechanisms of differ-
ent modalities in the inference process of LVLMs to further
optimize the proposed method.

B. Implementation Details
For most methods, we adhere to their initial setup and

perform the reduction of the visual KV cache based on the
obtained importance ranking of visual tokens and the spec-
ified compression ratio. Our findings indicate that merging
the dropped KV cache into the KV cache that needs to be
retained works effectively on the LLaVA-v1.5 [5]. How-
ever, this approach tends to cause repetition issues in the
LLaVA-OV series [3], InternVL2 series [1], and Qwen2-
VL series [12], which results in a decline in model perfor-
mance. Consequently, for Elastic Cache [6], we omitted the
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Table 8. The number of visual tokens and text tokens across dif-
ferent models and evaluation sets.

Models ChatQA [7] InfoVQA [8] DocVQA [9] TextVQA [10]

Nv Nt Nv Nt Nv Nt Nv Nt

LLaVA-OV-7B [3] 4763 47 6382 45 7224 42 5183 39
InternVL2-8B [1] 1828 32 3740 31 3230 28 1668 25

Qwen2-VL-7B [12] 1302 36 4450 34 4669 31 1325 28

merge operation in the main experiments to achieve optimal
performance results. In practical applications, and as ob-
served in most existing multimodal evaluation datasets, vi-
sual tokens constitute the majority, while text tokens remain
concise and short. The redundancy in the KV cache pri-
marily resides in the visual part. As demonstrated in Table
8, a comparison of the actual number of visual tokens and
text tokens in these multimodal VQA datasets shows that
the visual component accounts for more than 97%. Thus,
compressing only the visual KV cache eliminates redun-
dant cache without affecting the complete expression of text
instructions. Unless otherwise specified, all methods and
experiments perform KV cache compression solely on the
visual part.

C. Additional Main Results
Comparison with various model parameter sizes. Table
9 displays the comparison results of different parameter-
sized InternVL2 [1] series models across various VQA
datasets as the compression ratio varies. Similar to the con-
clusions drawn from experiments with different model ar-
chitectures, the proposed method achieves superior results
on models with different parameter sizes compared to ex-
isting methods. For instance, when retaining only 1% of
the visual KV cache, the proposed method outperforms the
SnapKV [4] method by an average of approximately 4.3%
to 6.0% across four VQA evaluation datasets as the model
parameter size varies. By synthesizing experiments on dif-
ferent architectures and base models with varying param-
eter sizes, we observe that the proposed method not only
achieves better compression results but also demonstrates
good general applicability. Furthermore, a comparison of
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Table 9. The comparison of the KV cache compression methods on multimodal VQA benchmarks. The best result is highlighted in bold.
ChatQA [7] InfoVQA [8] DocVQA [9] TextVQA [10]Models Methods 50% 10% 5% 1% 50% 10% 5% 1% 50% 10% 5% 1% 50% 10% 5% 1%

Full 67.9 67.9 67.9 67.9 50.1 50.1 50.1 50.1 80.0 80.0 80.0 80.0 70.8 70.8 70.8 70.8
H2O [13] 67.7 62.0 57.7 53.5 50.0 42.7 38.8 33.7 79.8 73.8 68.2 57.0 70.1 58.4 52.3 47.6
Elastic [6] 67.5 61.8 57.6 54.1 50.1 42.6 39.7 32.2 79.8 74.0 68.8 57.5 70.3 59.8 54.7 47.2

PrefixKV [11] 67.9 62.1 58.0 53.3 49.9 43.8 40.6 34.2 79.7 74.3 70.4 59.6 70.1 60.7 55.3 48.6
SnapKV [4] 67.8 63.7 59.8 56.7 50.1 47.3 44.4 39.7 79.8 76.5 72.1 61.2 70.4 64.5 60.7 52.2

InternVL2-1B [1]

Ours 67.8 65.7 63.5 60.8 50.1 49.6 47.5 45.8 80.0 77.7 74.3 68.5 70.6 68.9 66.5 59.3
Full 81.1 81.1 81.1 81.1 65.9 65.9 65.9 65.9 88.1 88.1 88.1 88.1 74.7 74.7 74.7 74.7

H2O [13] 81.1 79.2 77.6 72.1 65.9 61.1 57.4 51.8 79.9 80.1 75.4 69.2 74.2 66.4 58.8 51.3
Elastic [6] 81.1 79.4 77.9 73.6 65.8 61.8 59.2 53.3 79.7 80.7 75.9 69.6 74.0 67.0 60.4 52.6

PrefixKV [11] 81.0 79.5 77.8 73.2 65.9 62.6 59.1 53.4 88.0 81.4 76.4 70.3 74.4 67.5 61.4 53.7
SnapKV [4] 81.1 79.3 78.5 74.6 65.9 64.3 61.8 56.7 88.0 84.3 79.7 73.2 74.4 70.3 65.8 60.3

InternVL2-4B [1]

Ours 81.1 80.4 79.6 77.7 66.0 65.5 64.2 62.1 88.1 86.8 84.3 81.5 74.5 73.6 70.7 67.4
Full 85.4 85.4 85.4 85.4 75.4 75.4 75.4 75.4 92.1 92.1 92.1 92.1 82.5 82.5 82.5 82.5

H2O [13] 84.9 82.4 80.4 78.6 75.0 71.8 65.1 62.5 91.9 84.4 81.6 75.1 82.3 75.2 70.3 65.2
Elastic [6] 84.6 82.8 81.6 78.3 74.8 73.6 65.5 62.7 91.8 83.8 81.2 74.3 82.4 75.6 70.7 65.7

PrefixKV [11] 84.8 82.2 81.5 78.8 75.2 73.8 66.4 63.2 92.0 84.2 81.5 74.7 82.4 75.5 70.6 65.4
SnapKV [4] 85.3 83.5 83.0 80.1 75.4 74.1 69.5 65.6 91.9 86.6 86.3 82.5 82.5 78.6 74.3 71.1

InternVL2-26B [1]

Ours 85.5 84.7 84.2 82.3 75.4 74.8 72.8 70.7 92.1 91.4 89.0 86.8 82.4 81.7 78.2 76.6
Table 10. Quantitative results on inference latency and throughput. The number of tokens output is consistently set to 512.

Prefill Latency (s) Decoding Latency (s) Throughput (token/s)
Models Batch Size Prompt Length Full Ours Full 50% 10% Full 50% 10%

2k 1.2 1.4+16.7% 9.3 7.0+24.7% 5.9+36.6% 440 585+33.0% 694+36.6%

8k 4.6 5.0+8.7% 13.3 10.5+21.1% 8.8+33.8% 308 390+26.6% 465+51.0%

16k 9.8 10.5+7.1% 24.8 15.7+36.7% 11.9+52.0% 165 261+58.2% 344+52.0%
8

32k 23.8 24.8+4.2% 46.2 28.1+39.2% 18.2+60.6% 89 146+64.0% 225+60.4%

2k 2.5 2.7+8.0% 12.2 7.4+39.3% 6.0+50.8% 671 1107+65.0% 1365+50.8%

8k 9.9 10.6+7.1% 21.6 12.9+40.3% 8.9+58.8% 379 635+67.5% 920+58.8%

InternVL2-8B [1]

16
16k 21.6 22.4+3.7% 28.5 16.2+43.2% 10.0+64.9% 287 506+76.3% 819+65.0%

2k 1.1 1.3+18.2% 8.4 6.6+21.4% 5.2+38.1% 488 621+27.3% 788+38.1%

8k 4.3 4.7+27.3% 12.6 9.7+23.0% 8.1+35.7% 325 422+29.8% 506+55.7%

16k 9.4 10.2+8.5% 23.7 14.9+37.1% 11.2+52.7% 173 275+59.0% 366+112.9%
8

32k 22.7 24.0+5.7% 45.0 26.2+41.8% 14.6+67.6% 91 156+71.4% 214+135.2%

2k 2.1 2.3+9.5% 10.1 6.8+32.7% 5.2+48.5% 811 1205+48.6% 1575+94.2%

8k 8.6 9.2+7.0% 19.7 12.1+38.6% 8.4+57.4% 426 677+37.1% 975+128.9%

Qwen2-VL-7B [12]

16
16k 19.2 20.1+4.7% 27.0 15.6+42.2% 9.7+64.1% 303 525+73.3% 845+179.0%

models with different parameter sizes reveals that as the
model parameter size decreases, the impact of KV cache
compression on model performance becomes more signifi-
cant. This trend indicates that smaller parameter-sized mod-
els are less effective at integrating information within to-
kens, thereby placing a greater emphasis on the KV cache
compression method’s ability to select important visual to-
kens. The proposed method demonstrates a superior capa-
bility in assessing the importance of visual tokens, thereby
more effectively reducing model performance loss.

Inference efficiency on more LVLMs. Inference effi-
ciency on more LVLMs. Table 10 further presents the com-
parison of inference latency between the proposed method
and the full cache on InternVL2-8B [1] and Qwen2-VL-7B
[12]. From the table, it can be observed that when the input
demand is relatively low, the model’s need for the KV cache
is reduced, thus limiting the gains from the KV cache com-
pression method. Nevertheless, there is at least a 21% re-

duction in decoding latency and a 27% increase in through-
put. As the input demand continues to rise, the benefits
from KV cache compression become more significant. For
example, in the case of the Qwen2-VL-7B [12] with a batch
size of 16 and a prompt length of 16k, the proposed method
can reduce decoding latency by 42% and increase through-
put by 73% with almost no impact on model performance,
while only adding 5% to prefill latency.

Detailed results of MMBench-Video. Table 11 presents
the breakdown scores of different methods applied to the
LLaVA-OV-7B [3] on the MMBench-Video [2] evaluation
dataset. The proposed method outperforms existing meth-
ods in most subcategories, demonstrating its superior per-
formance and stability. Notably, as the compression ratio
increases, the advantages of the proposed method become
more pronounced, especially for perceptual items that are
more sensitive to visual information. By more accurately
assessing the importance of visual tokens, the proposed



Table 11. The detailed comparison of the KV cache compression methods on MMBench-Video [2]. CP (coarse perception), FP-S (single-
instance fine-grained perception), FP-C (cross-instance fine-grained perception), HL (Hallucination), LR (logic reasoning), AR (attribute
reasoning), RR (relation reasoning), CSR (commonsense reasoning), TR (temporal reasoning).

Methods Overall Perception Reasoning CP FP-S FP-C HL LR AR RR CSR TRRatio Full 1.81 1.86 1.70 1.90 1.94 1.70 0.81 1.63 1.84 1.64 1.85 1.57
H2O [13] 1.66 1.68 1.56 1.76 1.74 1.66 0.71 1.56 1.76 1.65 1.63 1.42
Elastic [6] 1.68 1.71 1.60 1.79 1.75 1.66 0.73 1.58 1.77 1.67 1.66 1.44

PrefixKV [11] 1.72 1.75 1.63 1.84 1.79 1.68 0.82 1.58 1.79 1.68 1.68 1.48
SnapKV [4] 1.75 1.80 1.67 1.88 1.88 1.59 0.77 1.58 1.83 1.73 1.85 1.47

50%

Ours 1.80 1.84 1.69 1.89 1.94 1.66 0.81 1.61 1.84 1.77 1.79 1.53
H2O [13] 1.63 1.64 1.61 1.72 1.71 1.52 0.74 1.54 1.81 1.64 1.73 1.43
Elastic [6] 1.62 1.64 1.58 1.77 1.67 1.51 0.79 1.46 1.71 1.61 1.68 1.48

PrefixKV [11] 1.68 1.74 1.58 1.81 1.73 1.63 0.80 1.56 1.79 1.68 1.69 1.47
SnapKV [4] 1.70 1.76 1.60 1.83 1.83 1.62 0.82 1.55 1.70 1.67 1.78 1.44

10%

Ours 1.78 1.80 1.65 1.85 1.91 1.64 0.82 1.58 1.80 1.75 1.79 1.48
H2O [13] 1.47 1.45 1.48 1.62 1.51 1.40 0.72 1.20 1.51 1.45 1.55 1.42
Elastic [6] 1.51 1.52 1.51 1.65 1.54 1.40 0.75 1.22 1.54 1.50 1.60 1.45

PrefixKV [11] 1.50 1.48 1.50 1.63 1.52 1.39 0.74 1.20 1.51 1.48 1.59 1.44
SnapKV [4] 1.55 1.56 1.54 1.70 1.60 1.45 0.82 1.30 1.63 1.57 1.69 1.50

1%

Ours 1.67 1.70 1.58 1.78 1.76 1.65 0.72 1.58 1.76 1.65 1.64 1.52

Table 12. The results that the dropped KV cache is merged with the
nearest preserved KV cache at different proportions. 100% means
complete merging is used, while 0% means complete dropping is
used.

Datasets Ratio 100% 80% 60% 40% 20% 0%

ChatQA [7] 10% 76.4 77.0 77.4 78.6 79.2 79.9
1% 72.2 73.6 74.2 75.5 76.1 76.4

InfoVQA [8] 10% 61.1 63.7 64.5 64.9 65.5 65.7
1% 56.4 57.6 58.8 60.4 61.8 62.5

DocVQA [9] 10% 80.3 81.6 82.7 83.8 84.3 85.5
1% 67.0 68.9 70.5 71.8 72.6 73.2

TextVQA [10] 10% 68.8 70.6 72.2 73.7 74.6 75.3
1% 59.7 61.8 63.2 65.3 66.6 67.1

Table 13. Comparison of results across different evaluation sets
and compression ratios with varying relevance thresholds.

Datasets Ratio 0.99 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

ChatQA [7] 10% 78.4 79.8 79.9 79.6 78.7 78.6 78.1 77.5 77.7
1% 75.8 76.5 76.4 76.2 75.5 74.1 73.3 72.9 71.5

InfoVQA [8] 10% 65.1 65.5 65.7 65.7 65.0 63.7 62.2 61.6 59.4
1% 61.9 62.3 62.5 62.4 61.2 58.6 55.4 53.7 52.2

DocVQA [9] 10% 82.4 85.6 85.5 84.7 81.3 78.8 76.1 75.5 74.8
1% 71.2 72.8 73.2 72.9 70.0 65.5 61.8 58.9 55.6

TextVQA [10] 10% 73.4 75.0 75.3 75.4 74.6 74.0 73.3 72.5 71.4
1% 65.5 67.2 67.1 66.8 65.2 64.7 63.5 62.4 61.2

method retains the critical visual KV cache, thereby min-
imizing the loss of model performance.

D. Additional Ablation Studies

KV Cache Merge vs. KV Cache Drop. Table 12 compares
the model performance using merge and drop strategies
for KV cache compression. The drop strategy clearly out-
performs the merge strategy, with performance decline be-

Table 14. Layer-wise budget Jensen-Shannon divergence across
different datasets and compression ratios, where Avg. corresponds
to using the average allocation strategy.
Ratio Setting ChatQA [7] InfoVQA [8] DocVQA [9] TextVQA [10]

10%
Avg. & st 0.46 0.54 0.61 0.57
Avg. & sk 0.53 0.49 0.58 0.55
st & sk 0.62 0.58 0.63 0.52

1%
Avg. & st 0.51 0.58 0.63 0.59
Avg. & sk 0.57 0.52 0.60 0.58
st & sk 0.68 0.61 0.59 0.57
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Figure 6. Comparison on InfoVQA [8] and DocVQA [9] by retain-
ing only one visual token, which is selected based on the sorting
of visual token importance scores using different methods.

coming more significant as the merge proportion increases.
This phenomenon persists across different VQA evaluation
sets and various compression ratios, indicating that directly
dropping less important visual KV cache in LVLMs is a
wiser choice. While the drop operation results in loss of vi-
sual information in the corresponding KV cache, the full to-
ken attention interaction during the prefill stage allows the
remaining important visual tokens and text tokens to po-
tentially absorb this missing information. This absorption
helps mitigate the information loss caused by dropping KV
cache during subsequent decoding. Conversely, although



the merge operation appears to preserve all visual informa-
tion, the model lacks the ability to decode the original vi-
sual information from the merged visual KV cache. This
operation may disrupt the representation of important vi-
sual information, ultimately leading to a decline in model
performance.
Relevance Threshold α. Table 13 compares model per-
formance under different relevance threshold. A relevance
threshold around 0.9 achieves the best overall performance
across various evaluation sets and compression ratios. If
the relevance threshold is set too high or too low, it can lead
to incomplete expression of instruction information or the
inclusion of noise, respectively. This degrades the quality
of visual KV cache importance assessment, thereby affect-
ing the model’s performance after KV cache compression.
Comparing a higher relevance threshold with a lower one
reveals that introducing more noisy text significantly affects
model performance. This emphasizes the importance of fil-
tering out irrelevant text tokens within the observation win-
dow when compressing KV cache in LVLMs.
The Consistency of Strength and Skewness. To illustrate
the difference between the dynamic budget and the average
budget derived from the distribution strength and skewness
used in this method, we recorded the budget distribution
differences across various evaluation instances. The differ-
ences are quantified using Jensen-Shannon (JS) divergence,
which ranges from 0 to 1. A JS divergence closer to 0 in-
dicates smaller differences between the two distributions,
while a value closer to 1 indicates larger differences. As
shown in Table 14, the hierarchical budgets allocated based
solely on the strength and skewness of the importance distri-
bution are similar to those with an average allocation, indi-
cating a complementary relationship. The former examines
the layer’s emphasis on visual information, while the latter
focuses on the layer’s ability to understand and interpret vi-
sual information. Combining both approaches can lead to
better model performance.
Ablation Results of the Visual KV Cache Importance
Evaluation. Figure 6 shows a comparison of selecting a
single visual token based on the importance ranking of vi-
sual KV cache obtained by various methods on InfoVQA
[8] and DocVQA [9]. As the importance of the selected
visual token decreases, the performance of our proposed
method also decreases reasonably. Additionally, for the
same importance ranking, the performance of our proposed
method is superior to that of existing methods.

E. Visualization of Chat Generation

Figures 7, 8, 9, and 10 illustrate a comparison of different
methods applied to real chat generation while retaining only
1% of the visual KV cache. It is evident that the answers
generated by the proposed method are more accurate.

Which three business types is Pinterest good for?

Restaurants, Interior design, Wedding venues

User:

LLaVA-OV w/ Full Cache:

Restaurants, Hotels, RetailLLaVA-OV w/ H2O:

Restaurants, Hotels, RetailLLaVA-OV w/ Elastic:

Restaurants, Interior design, Wedding venuesLLaVA-OV w/ AirCache:

what date is under present readings?

june 28, 2009

User:

LLaVA-OV:

june 20LLaVA-OV w/H2O:

june 28LLaVA-OV w/Elastic:

june 28, 2009LLaVA-OV w/AirCache:

Figure 7. Chat example applying KV cache compression methods
on LLAVA-OV-7B [3].

Which three business types is Pinterest good for?

Restaurants, Interior design, Wedding venues

User:

LLaVA-OV w/ Full Cache:

Restaurants, Hotels, RetailLLaVA-OV w/ H2O:

Restaurants, Hotels, RetailLLaVA-OV w/ Elastic:

Restaurants, Interior design, Wedding venuesLLaVA-OV w/ AirCache:

What date is under present readings?

june 28, 2009

User:

LLaVA-OV w/ Full Cache:

june 20LLaVA-OV w/ H2O:

june 28LLaVA-OV w/ Elastic:

june 28, 2009LLaVA-OV w/ AirCache:

Figure 8. Chat example applying KV cache compression methods
on LLAVA-OV-7B [3].
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