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In this supplementary material, we first state the limita-
tions of the proposed method and potential future work in
Section A. Next, we provide more details on the method’s
application in Section B. After that, additional main com-
parative experiments with more models are discussed in
Section C. Furthermore, we present additional ablation ex-
periments in Section D. Finally, the visualization of chat
generation is shown in Section E.

A. Limitations and Future Works

In performing dynamic allocation of the layer-wise com-
pression budget, the proposed method requires obtaining
the strength and skewness of the importance distribution of
visual tokens for all layers before determining the allocable
budget for each layer. This necessitates storing the complete
KV cache after the prefill stage and executing the reduc-
tion only once the final compression budget is determined.
Consequently, the proposed method is at a disadvantage in
terms of peak memory consumption, a challenge also faced
by most hierarchical budget allocation methods. Address-
ing how to maintain a peak memory advantage while sup-
porting dynamic allocation of budgets across layers will be
a key focus of our future work. In parallel, we will con-
tinue to explore the information flow mechanisms of differ-
ent modalities in the inference process of LVLMs to further
optimize the proposed method.

B. Implementation Details

For most methods, we adhere to their initial setup and
perform the reduction of the visual KV cache based on the
obtained importance ranking of visual tokens and the spec-
ified compression ratio. Our findings indicate that merging
the dropped KV cache into the KV cache that needs to be
retained works effectively on the LLaVA-v1.5 [5]. How-
ever, this approach tends to cause repetition issues in the
LLaVA-OV series [3], InternVL2 series [1], and Qwen2-
VL series [12], which results in a decline in model perfor-
mance. Consequently, for Elastic Cache [6], we omitted the
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Table 8. The number of visual tokens and text tokens across dif-
ferent models and evaluation sets.

Models ChatQA [7] InfoVQA [8] DocVQA [9] TextVQA [10]
N, Ny N, N N, Ny N, Ny
LLaVA-OV-7B [3] 4763 47 6382 45 7224 42 5183 39
InternVL2-8B [1] 1828 32 3740 31 3230 28 1668 25
Qwen2-VL-7B [12] 1302 36 4450 34 4669 31 1325 28

merge operation in the main experiments to achieve optimal
performance results. In practical applications, and as ob-
served in most existing multimodal evaluation datasets, vi-
sual tokens constitute the majority, while text tokens remain
concise and short. The redundancy in the KV cache pri-
marily resides in the visual part. As demonstrated in Table
8, a comparison of the actual number of visual tokens and
text tokens in these multimodal VQA datasets shows that
the visual component accounts for more than 97%. Thus,
compressing only the visual KV cache eliminates redun-
dant cache without affecting the complete expression of text
instructions. Unless otherwise specified, all methods and
experiments perform KV cache compression solely on the
visual part.

C. Additional Main Results

Comparison with various model parameter sizes. Table
9 displays the comparison results of different parameter-
sized InternVL2 [1] series models across various VQA
datasets as the compression ratio varies. Similar to the con-
clusions drawn from experiments with different model ar-
chitectures, the proposed method achieves superior results
on models with different parameter sizes compared to ex-
isting methods. For instance, when retaining only 1% of
the visual KV cache, the proposed method outperforms the
SnapKV [4] method by an average of approximately 4.3%
to 6.0% across four VQA evaluation datasets as the model
parameter size varies. By synthesizing experiments on dif-
ferent architectures and base models with varying param-
eter sizes, we observe that the proposed method not only
achieves better compression results but also demonstrates
good general applicability. Furthermore, a comparison of



Table 9. The comparison of the KV cache compression methods on multimodal VQA benchmarks. The best result is highlighted in bold.

‘ ChatQA [7] nfoVQA [3] DocVQA [0] TextVQA [10]
Models Methods 550100 5% 1% [50% 10% 5% 1% | 0% 10% 5% 1% |50% 10% 5% 1%
Full 679 679 679 679 | 501 50. 50. 50.1 | 80.0 800 800 80.0 | 70.8 70.8 70.8 7038
H20[13] | 67.7 620 577 535|500 427 388 337|798 738 682 57.0|70.1 584 523 47.6
InternVLo1p (1] |  Elastic[6] | 675 618 576 541|501 426 397 322|798 740 688 515|703 598 547 472
PrefixKV [11] | 67.9 62.1 580 533 | 409 438 406 342|797 743 704 596|701 60.7 553 486
SnapKV [4] | 67.8 637 598 3567 | 50.1 473 444 397 | 798 765 721 612 | 704 645 607 522
Ours 678 657 635 60.8 | 50.1 49.6 475 458 | 80.0 777 743 685 | 70.6 689 66.5 593
Full 81.1 8.1 811 8l.1] 659 650 659 659 ] 881 83.1 88.1 88.1| 747 747 747 747
H20[13] | 811 792 77.6 721|659 61.1 574 518|799 80.1 754 692|742 664 588 513
InternVL24p [1] | Elastielo] | LI 794 779 736 | 658 618 592 533|797 807 759 696 | 740 670 604 526
PrefixKV [11] | 81.0 795 77.8 732 | 659 626 59.1 534|880 814 764 703|744 675 614 537
SnapKV [4] | 81.1 793 785 746 | 659 643 61.8 567 | 88.0 843 797 732 | 744 703 658 60.3
Ours 81.1 804 79.6 777 | 660 655 642 621|881 868 843 8L5| 745 73.6 707 674
Full 854 854 854 854|754 754 754 754|921 921 921 92.1 | 825 825 825 825
H20[13] | 849 824 804 786|750 718 651 625|919 844 816 751 |83 752 703 652
InternVL2265 (1] | Elasic[0] | 846 828 816 783|748 736 655 627|918 838 812 743 | 824 756 707 657
PrefixKV [11] | 848 822 815 788 | 752 73.8 664 632|920 842 815 747|824 755 70.6 654
SnapKV [4] | 853 835 83.0 80.1 | 754 741 69.5 656|919 866 863 825 | 825 786 743 7l
Ours 855 847 842 823|754 748 728 707 | 921 914 89.0 868 | 824 817 782 76.6

Table 10. Quantitative results on inference latency and throughput. The number of tokens output is consistently set to 512.

Prefill Latency (s) Decoding Latency (s) Throughput (token/s)

Models | BawhSize - PromptLength gy ™o Ral 50% 10%  Fall  50% 10%
2%k 12 141670 93 T0.sims 59:isscn 40 5854300 6941366
. 8k 46 50,570 133 105.0115 88is5e% 308  390.00¢s 465 0
16k 9.8 105,50 248 157.507% 119.0000 165 260,s500 344,500
nteraVL2-8B [1] 32k 238 248,400 462 2814000 18210067 89  146ig10% 2256049
2k 25 27is0% 122 T4i3939 604508y 671 11076509 1365150.5%
16 8k 9.9 1064719 216 1294047 89issgn 379  635.6m55 9204585
16k 216 224,579 285 162,400 100.6100 287 506, 7645 8191 5.0%
2k L1 13415090 84  6.64214% 5243509 488 621,973y  788i 351y
g 8k 43 47.9m3n 126 97.ss0m  Slissrw 325 4221505 5065579
16k 94 102,550 237 1494010 112.5000 173 275is00%  3665119.0%
Owen2-VL7B [17] 32k 2027 240,50 450 262 5sn 146i6r6n 91 15647145 214415000
2% 21 23,050 1001 68,5970 52455 811 1205456 157540100
16 8k 86 92,700 197 121, 400% Sdisran 426 677i3m10  975.108.0%
16k 192 2014479 270 15644209 97i601% 303 525.733%  845:179.0%

models with different parameter sizes reveals that as the
model parameter size decreases, the impact of KV cache
compression on model performance becomes more signifi-
cant. This trend indicates that smaller parameter-sized mod-
els are less effective at integrating information within to-
kens, thereby placing a greater emphasis on the KV cache
compression method’s ability to select important visual to-
kens. The proposed method demonstrates a superior capa-
bility in assessing the importance of visual tokens, thereby
more effectively reducing model performance loss.

Inference efficiency on more LVLMs. Inference effi-
ciency on more LVLMSs. Table 10 further presents the com-
parison of inference latency between the proposed method
and the full cache on InternVL2-8B [1] and Qwen2-VL-7B
[12]. From the table, it can be observed that when the input
demand is relatively low, the model’s need for the KV cache
is reduced, thus limiting the gains from the KV cache com-
pression method. Nevertheless, there is at least a 21% re-

duction in decoding latency and a 27% increase in through-
put. As the input demand continues to rise, the benefits
from KV cache compression become more significant. For
example, in the case of the Qwen2-VL-7B [12] with a batch
size of 16 and a prompt length of 16k, the proposed method
can reduce decoding latency by 42% and increase through-
put by 73% with almost no impact on model performance,
while only adding 5% to prefill latency.

Detailed results of MMBench-Video. Table 11 presents
the breakdown scores of different methods applied to the
LLaVA-OV-7B [3] on the MMBench-Video [2] evaluation
dataset. The proposed method outperforms existing meth-
ods in most subcategories, demonstrating its superior per-
formance and stability. Notably, as the compression ratio
increases, the advantages of the proposed method become
more pronounced, especially for perceptual items that are
more sensitive to visual information. By more accurately
assessing the importance of visual tokens, the proposed



Table 11. The detailed comparison of the KV cache compression methods on MMBench-Video [2]. CP (coarse perception), FP-S (single-
instance fine-grained perception), FP-C (cross-instance fine-grained perception), HL (Hallucination), LR (logic reasoning), AR (attribute
reasoning), RR (relation reasoning), CSR (commonsense reasoning), TR (temporal reasoning).

Ratio Methods Overall Perception Reasoning CP FP-S FP-C HL LR AR RR CSR TR
Full 1.81 1.86 1.70 190 194 170 081 1.63 184 164 185 1.57

H20 [13] 1.66 1.68 1.56 1.76 1.74 1.66 071 156 176 1.65 1.63 142

Elastic [6] 1.68 1.71 1.60 1.79 175 166 073 158 1.77 167 166 144

50% | PrefixKV [11] 1.72 1.75 1.63 1.84 179 1.68 0.82 158 179 1.68 1.68 1.48
SnapKV [4] 1.75 1.80 1.67 1.88 1.88 1.59 0.77 158 183 1.73 185 147

Ours 1.80 1.84 1.69 1.89 194 166 081 1.61 184 1.77 179 153

H20 [13] 1.63 1.64 1.61 172 171 152 074 154 181 164 173 143

Elastic [6] 1.62 1.64 1.58 1.77 1.67 151 079 146 1.71 161 1.68 1.48

10% | PrefixKV [11] 1.68 1.74 1.58 1.81 173 1.63 080 156 1.79 1.68 1.69 147
SnapKV [4] 1.70 1.76 1.60 1.83 183 162 082 155 170 1.67 178 144

Ours 1.78 1.80 1.65 185 191 164 082 158 180 175 1.79 148

H20 [13] 1.47 1.45 1.48 1.62 151 140 072 120 1.51 145 155 142

Elastic [6] 1.51 1.52 1.51 1.65 154 140 075 122 154 150 1.60 1.45

1% | PrefixKV [11] 1.50 1.48 1.50 1.63 152 139 074 120 151 148 159 144

SnapKV [4] 1.55 1.56 1.54 1.70 1.60 145 082 130 1.63 157 169 1.50

Ours 1.67 1.70 1.58 1.78 1.76  1.65 072 158 176 1.65 1.64 1.52

Table 12. The results that the dropped KV cache is merged with the
nearest preserved KV cache at different proportions. 100% means
complete merging is used, while 0% means complete dropping is

Table 14. Layer-wise budget Jensen-Shannon divergence across
different datasets and compression ratios, where Avg. corresponds
to using the average allocation strategy.

used. Ratio Setting ChatQA [7] InfoVQA [8] DocVQA [9] TextVQA [10]
Datasets Ratio 100% 80% 60% 40% 20% 0% Avg. & s 0.46 0.54 0.61 057
Chaga (] 0% 764 770 774 786 792 799 0% Ave & 09 it 0 Pt
a 1% 722 736 742 755 761 764 5t & Sk : : : :
Avg. & s¢ 0.51 0.58 0.63 0.59
InfovQA [ 0% 6L 637 645 649 655 657 1% Ave & s 0.57 0.52 0.60 0.58
1% 564 576 588 604 618 625 51 & 5k 0.68 0.61 0.59 057
10% 803 816 827 838 843 855
DocVQATL g 670 689 705 718 726 732 o _
10% 688 70.6 722 737 746 1753 w |, o
TextVQATIOL g 597 618 632 653 666 67.1 - -

Table 13. Comparison of results across different evaluation sets
and compression ratios with varying relevance thresholds.

Datasets ~ Ratio 099 095 09 085 08 075 07 065 06
10% 784 798 799 79.6 787 786 78.1 715 717

ChaQATTI g 758 765 764 762 755 T4l 733 729 715

nfovQA [y 0% 651 655 657 67 650 637 622 616 94
o 1% 619 623 625 624 612 586 554 537 522

10% 824 856 855 847 813 788 761 755 748

DocVQATT 1, 712 728 732 729 700 655 618 589 556
10% 734 750 753 7154 746 740 733 725 714

TextVQALIOL g 655 672 67.1 668 652 647 635 624 612

method retains the critical visual KV cache, thereby min-
imizing the loss of model performance.

D. Additional Ablation Studies

KV Cache Merge vs. KV Cache Drop. Table 12 compares
the model performance using merge and drop strategies
for KV cache compression. The drop strategy clearly out-
performs the merge strategy, with performance decline be-
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Figure 6. Comparison on InfoVQA [&] and DocVQA [9] by retain-
ing only one visual token, which is selected based on the sorting
of visual token importance scores using different methods.

coming more significant as the merge proportion increases.
This phenomenon persists across different VQA evaluation
sets and various compression ratios, indicating that directly
dropping less important visual KV cache in LVLMs is a
wiser choice. While the drop operation results in loss of vi-
sual information in the corresponding KV cache, the full to-
ken attention interaction during the prefill stage allows the
remaining important visual tokens and text tokens to po-
tentially absorb this missing information. This absorption
helps mitigate the information loss caused by dropping KV
cache during subsequent decoding. Conversely, although



the merge operation appears to preserve all visual informa-
tion, the model lacks the ability to decode the original vi-
sual information from the merged visual KV cache. This
operation may disrupt the representation of important vi-
sual information, ultimately leading to a decline in model
performance.

Relevance Threshold «. Table 13 compares model per-
formance under different relevance threshold. A relevance
threshold around 0.9 achieves the best overall performance
across various evaluation sets and compression ratios. If
the relevance threshold is set too high or too low, it can lead
to incomplete expression of instruction information or the
inclusion of noise, respectively. This degrades the quality
of visual KV cache importance assessment, thereby affect-
ing the model’s performance after KV cache compression.
Comparing a higher relevance threshold with a lower one
reveals that introducing more noisy text significantly affects
model performance. This emphasizes the importance of fil-
tering out irrelevant text tokens within the observation win-
dow when compressing KV cache in LVLMs.

The Consistency of Strength and Skewness. To illustrate
the difference between the dynamic budget and the average
budget derived from the distribution strength and skewness
used in this method, we recorded the budget distribution
differences across various evaluation instances. The differ-
ences are quantified using Jensen-Shannon (JS) divergence,
which ranges from 0 to 1. A JS divergence closer to 0 in-
dicates smaller differences between the two distributions,
while a value closer to 1 indicates larger differences. As
shown in Table 14, the hierarchical budgets allocated based
solely on the strength and skewness of the importance distri-
bution are similar to those with an average allocation, indi-
cating a complementary relationship. The former examines
the layer’s emphasis on visual information, while the latter
focuses on the layer’s ability to understand and interpret vi-
sual information. Combining both approaches can lead to
better model performance.

Ablation Results of the Visual KV Cache Importance
Evaluation. Figure 6 shows a comparison of selecting a
single visual token based on the importance ranking of vi-
sual KV cache obtained by various methods on InfoVQA
[8] and DocVQA [9]. As the importance of the selected
visual token decreases, the performance of our proposed
method also decreases reasonably. Additionally, for the
same importance ranking, the performance of our proposed
method is superior to that of existing methods.

E. Visualization of Chat Generation

Figures 7, 8, 9, and 10 illustrate a comparison of different
methods applied to real chat generation while retaining only
1% of the visual KV cache. It is evident that the answers
generated by the proposed method are more accurate.

User: Social Media Platform
Cheat Sheet

Pinterest Twitter

Link clicks Link clicks, engagement, and foot traffc

LinkedIn

Key differentiating trait:
ol which is

Best f

Which three business types is Pinterest good for?

LLaVA-OV w/ Full Cache: Restaurants, Interior design, Wedding venues
LLaVA-OV w/ H20:
LLaVA-OV w/ Elastic:

Restaurants, Hotels, Retail

Restaurants, Hotels, Retail

LLaVA-OV w/ AirCache: Restaurants, Interior design, Wedding venues

Figure 7. Chat example applying KV cache compression methods
on LLAVA-OV-7B [3].

User:

What date is under present readings?

LLaVA-OV w/ Full Cache: june 28, 2009

LLaVA-OV w/ H20: june 20

LLaVA-OV w/ Elastic: june 28

LLaVA-OV w/ AirCache:  june 28, 2009

Figure 8. Chat example applying KV cache compression methods
on LLAVA-OV-7B [3].
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