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1. Inplementation Details

To ensure fair experimental comparisons, we adopt
the same modality backbones as SimMMDG [5] and
CMRF [6], with our experimental setup based on the
MMAction2 toolkit [4]. The feature dimensions for video,
audio, and optical flow are 2304, 512, and 2048, respec-
tively. In constructing the unified representation, both the
general information and specific information maintain a
consistent dimension of 512 across all modalities. Each
modality’s general encoder and specific encoder consist of
a two-layer MLP with an input dimension matching the re-
spective modality’s feature dimension (2304, 512, or 2048),
a hidden layer of size 2048, and an output dimension of 512.
The scalar temperature parameter τ is set to 0.1.

For modality-specific encoders, we use the SlowFast net-
work’s slow-only pathway for optical flow encoding, ini-
tialized with Kinetics-400 pre-trained weights, the Slow-
Fast network [7] for visual encoding, also initialized with
Kinetics-400 pre-trained weights [9], and ResNet-18 [8]
for audio encoding, initialized with weights from the VG-
GSound pre-trained checkpoint [3]. The hyperparameters
α1, α2, α3, α4 are set to 1.0, 2.0, 2.0, and 1.0, respectively.
For UR-Mixup, the Beta distribution parameter α is set to
0.2, while for UR-JiGen, the Jigsaw number P is set to 256.

All experiments are conducted on an NVIDIA GeForce
RTX 4090 GPU, with training performed for 20 epochs.
UR-IBN and UR-Mixup require approximately 3 hours,
while UR-JiGen takes around 3.5 hours. In our implementa-
tion, we initially experimented with a warm-start approach,
where training was conducted in two phases: first, learn-
ing the unified representation, followed by applying the
DG method. However, experimental results indicated that
warm-start had no significant impact. Consequently, we
adopted a more efficient end-to-end training strategy, where
the construction of the unified representation and the appli-
cation of the DG method occur simultaneously.

2. More Experiments

More Experiments about Multi-modal single-source
DG: As shown in Table 1, directly transferring DG meth-
ods [2, 11, 13] to MMDG results in significantly inferior
performance compared to models specifically designed for
MMDG [5, 6]. In contrast, our proposed approach substan-
tially improves their performance in the MMDG setting.
Notably, UR-JiGen and UR-Mixup demonstrate competi-
tive results against previous state-of-the-art models, further

Modality EPIC-Kitchens HAC

Method Video Audio Flow

Base X X 52.34 54.18
RNA-Net [12] X X 51.25 54.51
SimMMDG [5] X X 54.84 58.75
CMRF [6] X X 57.64 60.87
IBN [11] X X 51.43 53.62
JiGen [2] X X 52.69 55.15
Mixup [13] X X 53.28 56.29
UR-IBN (ours) X X 53.89 57.43
UR-JiGen (ours) X X 56.94 60.48
UR-Mixup (ours) X X 57.39 61.32

Base X X 53.64 56.80
RNA-Net [12] X X 53.86 57.26
SimMMDG [5] X X 57.32 60.63
CMRF [6] X X 59.26 62.45
IBN [11] X X 54.06 56.62
JiGen [2] X X 55.64 58.23
Mixup [13] X X 55.97 59.24
UR-IBN (ours) X X 55.97 58.35
UR-JiGen (ours) X X 60.21 62.44
UR-Mixup (ours) X X 60.46 62.93

Base X X 48.68 44.26
RNA-Net [12] X X 49.69 42.72
SimMMDG [5] X X 53.27 47.28
CMRF [6] X X 56.46 49.96
IBN [11] X X 49.35 44.86
JiGen [2] X X 51.87 46.48
Mixup [13] X X 52.33 46.72
UR-IBN (ours) X X 52.23 47.51
UR-JiGen (ours) X X 56.70 50.74
UR-Mixup (ours) X X 56.22 51.29

Table 1. Multi-modal single-source DG with different modalities
on EPIC-Kitchens and HAC dataset.

validating the effectiveness of our method.

More Experiments about Uni-modal performance in
MMDG: As shown in Table 2, the results are consistent
with those in Table 2, further reinforcing our previous find-
ings.

More Experiments about recent methods: Here, we
provide additional results of recent methods with unified
representations. Specifically, we report the performance
of mDSDI [1] and RDM [10] under the multimodal multi-
source domain generalization setting.

For space efficiency, we report average results across do-
main splits on EPIC-Kitchens and HAC. As shown in Ta-
ble 3, integrating our unified representation (UR) design
with these methods yields consistent and substantial im-
provements, outperforming the prior SOTA (CMRF) across
all modality combinations.



Method Video Audio Video-Audio Video Flow Video-Flow Audio Flow Audio-Flow

Base (M1) 58.73 - - 58.73 - - 40.04 - -
Base (M2) - 40.04 - - 58.30 - - 58.30 -
Base (MM) 56.65 38.62 59.63 55.28 55.78 60.89 39.42 54.86 53.14

JiGen (M1) 61.60 - - 61.60 - - 42.72 - -
JiGen (M2) - 42.72 - - 60.77 - - 60.77 -
JiGen (MM) 58.98 40.67 61.08 57.14 56.64 61.79 40.26 56.38 58.93

Mixup (M1) 61.92 - - 61.92 - - 43.74 - -
Mixup (M2) - 43.74 - - 60.89 - - 60.89 -
Mixup (MM) 58.52 39.31 61.18 57.86 57.24 62.08 40.38 57.08 58.32

UR-JiGen (ours) 62.02 43.41 63.63 61.26 61.08 64.15 43.52 60.89 63.32
UR-Mixup (ours) 62.45 43.79 64.77 62.34 61.51 66.42 44.24 60.24 62.63

Table 2. The average results of uni-modal performance comparison under multi-modal multi-source DG on EPIC-Kitchens with 3 different
modality combinations. M1, M2, and MM denote training settings where the data correspond to the first and second single-modal cases,
and the multi-modal case, respectively, following the column header order.
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Figure 1. Parameter sensitivity analysis on HAC with video and audio data

Method Video+Audio Video+Flow Audio+Flow Video+Audio+Flow
EPIC HAC EPIC HAC EPIC HAC EPIC HAC

CMRF 63.91 71.91 64.89 72.64 66.12 58.49 70.12 72.44
mDSDI 61.73 66.96 62.31 69.31 58.61 55.95 64.19 68.40
UR-mDSDI 65.61 73.65 67.25 73.76 65.99 60.39 71.25 74.42
RDM 62.04 67.58 62.64 69.87 58.67 56.37 63.93 68.61
UR-RDM 66.18 74.17 68.07 74.29 66.48 59.62 71.88 74.79

Table 3. Results of mDSDI and RDM with/without UR on EPIC-
Kitchens and HAC.

3. Parameter Sensitivity Analysis
As shown in Figure 1, we conduct a comprehensive analysis
of four loss hyperparameters in UR-Mixup by varying one
parameter at a time while keeping the others fixed. Notably,
our method exhibits minimal fluctuations across all parame-
ter settings, indicating a lower sensitivity to hyperparameter
selection.

4. Loss Function Ablation Study
As shown in Table 5 of the main paper, we ablate Lscl and
Lclub, where rows 1, 3, and 7 correspond to using Lcls only,
Lcls+Lscl, and the full objective, respectively. We do not ab-

late Lcls since it is essential for classification. Lrec is mean-
ingful only when Lclub is used, as it ensures semantic com-
pleteness after disentanglement.

We further include results using Lcls+Lclub, Lcls+Lscl+
Lclub, and Lcls +Lclub +Lrec, in addition to the original set-
tings. Each component contributes positively, confirming
its utility in improving performance, as detailed in Table 4.

Lcls Lscl Lclub Lrec D2,D3 → D1 D1,D3 → D2 D1,D2 → D3 Mean
X 54.94 62.26 61.70 59.63
X X 56.24 65.38 65.07 62.23
X X 54.75 62.53 62.08 59.79
X X X 56.44 67.41 67.25 63.70
X X X 55.31 63.26 63.65 60.74
X X X X 56.99 68.85 68.46 64.77

Table 4. Extended ablation study on loss components.

5. More Visualization
As shown in Figure 2, we provide additional visualizations
of the learned embeddings. It can be observed that the gen-
eral and specific information of each modality are well-
separated and consistently aligned across domains. Fur-
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Figure 2. Visualization of the learned embeddings using t-SNE (D2, D3 D1 in EPIC-Kitchens for multi-modal multi-source DG).

thermore, the embeddings of flow, video, and audio exhibit
strong alignment between the source and target domains.
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