DIVE: Taming DINO for Subject-Driven Video Editing

Supplementary Material

1. Additional Experiments

1.1. Comparison with Other Feature Extractors

To assess the effectiveness of DINO in DIVE, we replace
it with two alternative feature extractors, CLIP Image En-
coder [9] and Google ViT [3], and evaluate their impact
across all three stages of DIVE. As shown in Table 1,
DINO consistently outperforms both alternatives in all key
metrics, particularly in image alignment, temporal con-
sistency and overall video quality, demonstrating superior
identity preservation and motion coherence. The primary
reason for CLIP and ViT’s inferior performance lies in their
weaker ability to capture fine-grained semantic correspon-
dences. CLIP is optimized for image-text alignment and
lacks strong spatial discrimination, making it less effective
at distinguishing subject details across frames. Google ViT,
although designed for general vision tasks, does not explic-
itly focus on semantic consistency, leading to suboptimal
identity preservation. In contrast, DINO features exhibit
strong semantic consistency across frames while maintain-
ing precise part-level discrimination, ensuring accurate mo-
tion alignment and subject identity retention. This high-
lights DINO’s advantage in subject-driven video editing.

Feature Extractor Text Image Temporal Overall
Ali [1111 Al [7]1 Consistency [11]1  Video Quality [6] 1

‘ Reference Image Guided Subject Editing
CLIP Image Encoder 29.10 81.34 89.20 0.591
Google ViT 28.44 77.25 89.41 0.437
DINO 29.43 84.27 92.33 0.775

| Text Guided Subject Editinge

CLIP Image Encoder 31.26 \ 91.17 0.539
Google ViT 30.76 \ 90.31 0.502
DINO 32.29 \ 95.89 0.614

Table 1. Quantitative ablations of feature extractors.

1.2. Compare to Object Tracking Methods

We compared our DINO-based motion guidance with three
alternatives used in object tracking: optical flow [2], seg-
mentation masks [1], and Stable Diffusion features [12].
DINO features were replaced only in the first stage while
other stages remained unchanged. As shown in the follow-
ing table, our method achieves higher temporal consistency

and alignment, demonstrating the effectiveness of DINO as
semantically robust motion guidance.

Method Temporal Consistency T Text Alignment?  Image Alignment
optical flow [2] 88.24 28.49 69.58
masks [1] 83.54 28.35 63.29
Stable Diffusion features [12] 90.35 28.67 81.22
DINOV2 features (Ours) 92.33 29.43 84.27

Table 2. Quantitative ablations of object tracking methods.

1.3. Generalization to Stronger Backbone

DIVE is model-agnostic and can be applied with various
diffusion backbones. Applied to SDXL, it shows consistent
improvements over SD 1.5 (see below).

Backbone ‘ Text Alignment T Image Alignment T Temporal Consistency T
SDXL ‘ +9.84% +14.89% +20.03%

Table 3. Quantitative ablations of different backbones.

1.4. Comparison with Other Methods

In addition to the four state-of-the-art video editing meth-
ods compared in the main paper, we further evaluate
DIVE against two recent approaches: TokenFlow [5] and
I2VEdit [8]. The qualitative comparison are presented in
the project page', which provides a clearer visualization.
Compared to these methods, DIVE achieves more precise
subject identity preservation and better motion alignment,
benefiting from its dedicated identity registration and mo-
tion modeling stages. This highlights the trade-off between
zero-shot efficiency and fine-tuned accuracy in subject-
driven video editing.

2. Implementation of Learnable MLPs

In the first and second stages of DIVE, we incorporate
the extracted DINO features into the diffusion space us-
ing four learnable MLPs, 1 = {¢;|l € {1,2,3,4}} and
¢ = {¢|l € {1,2,3,4}}, respectively. This projection
process is illustrated in Figure 1. Here, H and W denote
the height and width of each latent variable transformed

lhttps ://dino-video-editing.github.io/
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Figure 1. Visualization of the projection process via learnable
MLPs in the first and second stages. Note that in implementa-
tion, the tensor shape is B x N x H x W x C with B and N
being the batch size and the number of frames; for simplicity, B
and NN are omitted there.

from a single frame or image. We use the ViT-g/14 vari-
ant without registers” as the DINOv2 backbone, with the
channel dimension of 1536. Correspondingly, the channel
dimensions of the intermediate features after each down-
sample block in the Stable Diffusion U-Net encoder are
{320, 640, 1280, 1280}.

3. Limitations

3.1. Identity Inconsistency

Similar to previous image personalization methods like
DreamBooth [10] and Textual Inversion [4], DIVE may also
occasionally produce artifacts in preserving the target sub-
ject’s identity, as illustrated in the first row of Figure 2. Ad-
ditionally, the identity across the edited video frames may
be inconsistent in complex scenes involving intricate inter-
actions, occlusions, or significant view changes, as shown
in the second row of Figure 2. These challenges primarily
result from the limited generative capacity of the pretrained
base model. Future work could explore integrating DIVE
with more robust text-to-video models to improve general-
ization and identity consistency.

3.2. Time Cost

Another limitation of DIVE is the computational overhead
due to its reliance on testing-time fine-tuning. Specifically,
the total time required for editing a video with specific ref-
erence images is approximately 10 minutes, broken down
as follows: 2 minutes for stage 1, 8 minutes for stage 2, and
30 seconds for stage 3. Future work could focus on devel-
oping zero-shot editing capabilities with DINO to improve
efficiency.

zhttps://qithub.com/facebookresearch/dinov2

Figure 2. Examples of DIVE’s limitations in identity preservation
and consistency.
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