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Supplementary Material

1. Related Work

1.1. Vision-Language Foundation Model.

Vision-Language Models (VLMs) have emerged as a sig-
nificant advancement in nowadays’ multi-modal learning,
capable of understanding and generating human-like re-
sponses based on visual and textual inputs. Early models
like CLIP (Contrastive Language—Image Pre-training) [25]
marks a pivotal moment by aligning images and text in a
shared embedding space, enabling the strong cross-modal
understanding. Following CLIP, models like BLIP (Boot-
strapping Language-Image Pre-training) [15, 16] extends
this foundation, enhancing the fusion of vision and lan-
guage modalities by leveraging more complex pre-training
objectives. As the capabilities of Large Language Models
(LLMs) [28, 33] progressed, their integration with vision
models gave rise to more powerful instruction-following
Large Vision-Language Models (LVLMs) [2, 7, 9, 18-
20, 24, 32, 34]. Early models such as Flamingo [1] and
PalLM-E [10], and more recent ones like LLaVA [20] and
Qwen-VL [2], exemplify this trend.

Most LVLMs share three essential components: the vi-
sion encoder, the vision-language connector, and the lan-
guage decoder. The vision encoder is responsible for ex-
tracting precise features from images, capturing both de-
tailed and abstract visual information. Popular choices in-
clude CLIP [25], OpenCLIP [12], EVA-CLIP [27], SigLIP
[31] and DINO series [21], which are designed to provide
both coarse-grained and fine-grained visual guidance. The
vision-language connector plays a critical role in mapping
the encoded visual features into a format that can be inter-
preted by the language model. Common designs include
simple MLP projectors and the Q-Former used in BLIP-2,
while more advanced solutions, such as the vision abstrac-
tor in mPLUG-Owl1 [30] and QLLaMA in Intern-VL [8],
push the boundaries of cross-modal alignment. The lan-
guage decoder is typically a pre-trained LLM designed to
handle large-scale language data, ensuring that the model
has robust instruction-following and conversational abili-
ties. However, the central challenge in building a strong
LVLM lies in bridging the modality gap between vision and
language. The goal is to ensure that the language decoder
can process visual tokens as naturally as it does language to-
kens, enabling smooth and meaningful conversations with
multi-modal inputs. This crucial process is typically ad-
dressed during the pre-training stage of LVLM develop-
ment. In this paper, we focus on evaluating and improving

cross-modal alignment during the pre-training of LVLMs,
a critical step in enhancing their overall performance and
ensuring seamless interaction between visual and textual
modalities.

1.2. Cross-Modal Alignment in LVLMs.

Cross-modal alignment plays a pivotal role in building a
strong LVLM that can well support users to input im-
ages/videos and the model can understand the multi-modal
contents. For the connector module of cross-modal align-
ment, there are typically three types widely used in current
LVLMs: 1) Flamingo-style [1]. The perceiver resampler
projects the vision features into the fixed number of vision
tokens, and the language decoder captures the vision in-
formation by introducing cross-attention in Gated XATTN-
DENSE layer. 2) BLIP-2-style [16]. A Q-Former to ex-
tract the instruction-aware information from vision tokens
through cross-attention and pass the extracted tokens to the
language decoder. 3) LLaVA-style [20]. A simple MLP
projector directly map the vision tokens into the text em-
bedding space.

Current Large Vision-Language Models (LVLMs) typi-
cally undergo a pre-training stage specifically designed for
cross-modal alignment. As a result, the quality of the pre-
training data and the strategies employed are critical for
enhancing this alignment. Early datasets, such as COCO
[17], Flickr30k [23], and LAION-400M [26], focus on short
captions describing visual content. More recent datasets
like ShareGPT4V [6] and ALLaVA [5] feature longer cap-
tions, aiming to provide richer descriptions to encourage
the model to fully utilize the dense information of vision
tokens. Besides, some works have shown that incorporat-
ing grounding information [22] or dense priors [14] in the
captions further enhances LVLMs’ ability to comprehend
visual inputs. High-quality data plays a key role in im-
proving the cross-modal alignment in LVLMs, driving ad-
vancements in multi-modal understanding. Various metrics
or evaluation tools such as loss, perplexity, in-context eval-
uations and rank-based metrics [29] are transferred from
LLMs to explore their potentials on quantifying LVLM pre-
training, while somehow exhibiting the limitations under
some particular LVLM pre-training settings.



#Data Scale 100K 200K 400K 600K 800K IM 1.2M 1.4M 1.6M 1.8M
Post-SFT Performance 56.5 58.1 59.5 59.9 60.0 59.6 60.1 59.8 60.0 59.8
MMD 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535
MMD + Layer-Wise Accum. 0.201 0.204 0.203 0.208 0.209 0.210 0.214 0.207 0.214 0.210
KID 0.536 0.536 0.536 0.536 0.536 0.537 0.536 0.537 0.536 0.537
KID + Layer-Wise Accum. 0.264 0.268 0.266 0.271 0.272 0.274 0.277 0.270 0.277 0.274
Mutual Information NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Mutual Information + Layer-Wise Accum.  NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
MIR w/o (a) (b) 6.645 6.056 4.984 3.443 4.591 NaN 3.883 NaN NaN NaN
MIR w/o (b) 6.645 5.964 4.921 NaN NaN NaN NaN NaN NaN NaN
MIR w/o (¢) 5.041 4.477 3.572 3.235 3.180 3.119 3.173 3.115 3.161 3.191
MIR 5.041 4.477 3.576 3.245 3.192 3.133 3.187 3.131 3.176 3.206

Table 1. Comparison with conventional metrics and ablation studies on the the proposed enhancements. We validate the effectiveness of dif-
ferent metrics and settings based on the pre-training data scaling experiment of LLaVA-v1.5 7B model. The conventional metrics selected
here includes MMD (Maximum Mean Discrepancy), KID (Kernel Inception Distance), and the mutual information. The components we
ablate in MIR includes (a) Outlier Token Removal, (b) Text-Centric Normalization, and (c) Newton-Schulz Square Root Approximation.
For vanilla MMD, KID, and Mutual Information, we report the result calculated at the input space of base LLM, as well as the layer-wise

accumulated results.

2. Appendix Experiments

2.1. Comparison with Conventional Metrics

Here are detailed clarifications about why we refer Fréchet
Distance as the basic metric component and why we pro-
pose Newton-Schulz based Square Root Approximation in
MIR. The clarifications are expended upon the last para-
graph in Sec. 2.1 of our paper, with further quantitative
results on the effectiveness and efficiency of MIR.

Generally, MIR enjoys the following properties: 1) rep-
resentative of the difference, 2) computationally efficient,
and 3) flexible in terms of sample number. Given the typ-
ical discrepancy in the number of vision and text tokens,
i.e., r # s, conventional metrics that require matching sam-
ple sizes between domains (e.g., KL-divergence and CKA
(Centered Kernel Alignment) [13]) are unsuitable for this
scenario. Additionally, due to the high diversity and dimen-
sionality of token features in LVLMs, MMD (Maximum
Mean Discrepancy) [4] and KID (Kernel Inception Dis-
tance) [3] struggle to capture complex, high-level visual dis-
tributions, and the mutual information is often hindered by
its high computational complexity. In contrast, Fréchet Dis-
tance [11] offers a more adaptive way with lower complex-
ity for efficient domain divergence computation in LVLMs.
However, it suffers from 1) the absolute value difference
and abnormal value problem across different layers or mod-
els, leading to unfair comparison among them; 2) the com-
putational cost of the matrix square root term in PyTorch,
leading to the difficulty when computing on high-dimension
matrices. Thereby, we enhance Fréchet Distance with our
targeted improvements for multi-modal scenario, including
Newton-Schulz based Square Root Approximation for effi-

cient MIR computation.

We compare MIR to other conventional metrics with a
comprehensive quantitative study. From Table 1, it is clear
that the values of the conventional metrics such as MMD,
KID, and mutual information are either irregular or reaching
NaN, only MIR can well reflect the trend of model abilities
as the pre-training data is scaling up. Table 1 also shows
the Newton-Schulz Square Root Approximation brings no
more than 1% error compare with traditional square root
solving method in MIR computation.

2.2. Newton-Schulz Square Root Approximation

As we illustrated in Sec. 2.1 of our paper, for the efficiency,
we compute the matrix square root term (X, j Zt,k)l/ 2
through Newton-Schulz iteration in the PyTorch version of
MIR computation. Apparently, based on the Schur theo-
rem, X, 12  is also positive semi-definite as the result of
the positive semi-definite properties of covariance matrices
3, k and 3 i. Therefore, we can define A = 3, X, , and
A has its square root that can be denoted as A /2.

Here we show the basic steps about how we compute
the square root A'/? via Newton-Schulz iteration. First,
we need to initialize iterative terms like Yo = A € R**"
and Zo = I, where I is the n x n identity matrix. Then,
we adopt the Newton-Schulz method to iteratively compute
Y.+1 and Zj 4 respectively, i.e.,

1
Yit1 = 3 (Yr+Z;'A),
(D
1
Ziv1 =75 (Zr+ Y L A).

After T iterations, Y will be gradually close to the
actual square root A'/2, ie., we can approximate it as
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Figure 1. (Top) t-SNE ablation. (Bottom) layer-wise ablation.

Y ~ A'/2. This approximation also supports the back-
ward pass in the gradient computation. Suppose the square
root obtained in the forward pass as Y, the gradient of A
can be updated as

VA=VY- (Y1) (YY), )

2.3. Analysis & Visualization for MoCa.

1) t-SNE results in Figure 1 shows that training only VL
projector leads to a relatively larger modality gap, while in-
corporating MoCa or unlocking LLM significantly narrows
this gap, promoting better modality space sharing (red cir-
cle). 2) Layer-wise ablation results in Figure 1 shows MoCa
helps the model reduce the modality gap in each early lay-
ers. 3) The results below proves that MoCa can also im-
proves pre-training quality in 13B model.

13B Model |MIR] Avg Acc | MMStar MME MMB SEED! TQA

LLaVA-vl.5|2.546  6l1.1 323 15238 679 68.1 609
+MoCa 2439 624 3577 15302 689 687 62.1

Table 2. MoCa'’s effectiveness on 13B model

2.4. Time Efficiency of MIR

We select different numbers of data samples for exploring
MIR'’s calculation efficiency, on a single NVIDIA A100-
80G GPU. As shown in Table 3, MIR is generally efficient

#Samples 1 10 20 50 100
Time (s) 13.3 19.2 233 33.1 65.9

Table 3. MIR computation time cost when using different amount
of image-text pair samples.

for evaluating a pre-trained LVLM. In most of cases, the
MIR value is enough reliable when using more than 20 sam-
ples for computation (See Section 2.6).

2.5. The Necessity of Text-Centric Normalization

The computation of our MIR requires text-centric normal-
ization for both vision tokens and text tokens. This design
ensures fairness in cross-layer comparisons of MIR, as FID
values are sensitive to the absolute magnitudes of the inputs.
Besides the ablation listed in Table 1, to explore this further,
we ablate the scaling factor used in MIR computation, and
the results are shown below:

Without text-centric normalization, the MIRs across dif-
ferent layers of the language model exhibit a pattern of first
decreasing and then increasing, with the final MIR even
higher than that of the first layer. This is counterintuitive
because the deepest layer is closest to the language super-
vision, and the vision/text tokens at that layer should be
more tightly aligned. For example, if we attempt to find the
closest text embeddings for the vision tokens in the deepest
layer across the vocabulary, we will observe much more se-
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Figure 2. Text-centric normalization is necessary for MIR compu-
tation. We ablate the o in MIR and find that it can help MIR to
realize the fair cross-layer comparison.

mantic alignment compared to the vision tokens in the first
layer. Therefore, without text-centric normalization, MIRs
across layers become incomparable due to differences in ab-
solute values, rendering cross-layer MIR comparisons un-
fair. Hence, applying text-centric normalization in MIR is
essential for meaningful comparisons.

2.6. Is MIR sensitive to the number of data sample?

As we clarified in the Method, we use 100 random selected
images from TextVQA validation set and text data from
CNN/DM for MIR calculation. Hereby, we explore the sen-
sitivity of MIR to the number of data samples. We ran-
domly choose 10 sets of the certain number of data samples
to compute MIR for pre-trained LLaVA-v1.5 7B model, re-
porting the average values and ranges under different data
sample numbers.
The results are as below:

#Samples 1 5 10 20 50
LLaVA-v1.57B  3.380 3.358 3.377 3.379 3.374

#Samples 100 200 500 800 1000
LLaVA-vl1.57B  3.375 3.376 3.376 3.376 3.376

Table 4. The mean value of MIR gradually becomes stable with
the increase of sample number.

It can be concluded that, if we use more than 20 samples
to compute MIR, the fluctuation range is relatively small
and we just need to compute MIR for one times as the neg-
ligible error, instead of computing for multiple times to get
average value. Overall, MIR is relatively robust to the num-
ber of data samples, which is effective and reliable when
N > 20.
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Figure 3. The fluctuation amplitude of MIR gradually decreases

with the increase of sample number.

2.7. Further Discussion w.r.t PPL in LVLMs

In Figure 1 of our paper, we show the PPL is not pre-
cise to indicate the pre-training quality. This result is draw
from computing PPL on LLaVA-v1.5 7B model that is pre-
trained on GPT-style pre-training data (i.e., ALLaVA and
ShareGPT4V-PT) and evaluating with the samples selected
from ShareGPT4V, which means the training data and the
evaluation samples are from the same domain. Here we
should argue that PPL is much less reliable when the pre-
training data has domain gap with the evaluation samples.
To this end, we conduct the experiments on the ~1.2M
data by mixing LLaVA’s BLIP-2-generated 558K data and
ALLaVA, to pre-train LLaVA-v1.5 7B model with different
scale of data. Then we follow the same evaluation settings
to compute PPL and MIR, showcasing the results at Fig-
ure 4.

It indicates that PPL is not appropriate for evaluating the
pre-training quality of LVLMs, which is struggling to deal
with LVLMs’ diverse pre-training data from multiple do-
mains nowadays. In contrast, MIR offers a reliable evalua-
tion for LVLM pre-training without SFT.

2.8. Larger LVLMs

We further study the MIRs of LVLMs that have different
scale of base LLMs. All of pre-training data and recipes
are the same with the official setting of LLaVA-v1.5. The
results are listed in Table 5.

The results above show that the 13B base LLM achieves
a lower MIR than the 7B base LLM, indicating that the
larger, well-trained LLM has a stronger capability to narrow
the modality gap in the shallow layers (as MIR is heavily
influenced by the larger modality gap in the shallow layers
of the language model). This is also consistent with the
improved post-SFT multi-modal performance of the 13B



PPL

60,325 60,33

6029 -60.3
60,26
4.9- 8
-60.2 &
©
B
4.8- 60.086 -60.1
’ g
o
)
-60.0 A
4.7- o)
o)
—59.9‘2D
L6 PPL
so i Model Performance -59.8
200K 400K 600K 800K M 1.2M

Pretrain Data Scale

MIR

60.325 60,33

2
8
B
o
o
w

60,26
3.8~

8

60.2 3

]

3.6- g

| =

60.086 MIR 60.1 LS

o

3.4 X Model Performance O

-60.0 A4

—_

3

321 —59.9‘23
3.0- |

59.771 59.8

200K 400K 600K 800K M 1.2M

Pretrain Data Scale

Figure 4. PPL is much less reliable when the pre-training data has domain gap with the evaluation samples.

Base LLM Vision Encoder Projector  Pretrain Data Epoch MIR
Vicuna-13B-v1.5 CLIP-L/336 MLP-2x LCS-558K lepoch 2.583
Vicuna-7B-v1.5 CLIP-L/336 MLP-2x LCS-558K lepoch 3.374
LLaMA-2-13B-Chat CLIP-L/336 Linear LCS-558K lepoch 2477
LLaMA-2-7B-Chat CLIP-L/336 Linear LCS-558K lepoch 3.699

Table 5. MIR values of LVLMs that have different scale of LLMs.

model. The results in Table 2 proves that MoCa can also
improves pre-training quality in 13B model.
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