
DreamCube: RGB-D Panorama Generation via Multi-plane Synchronization
Supplementary Material

Yukun Huang1 Yanning Zhou2 Jianan Wang3 Kaiyi Huang1 Xihui Liu1†

1The University of Hong Kong 2Tencent 3Astribot
https://yukun-huang.github.io/DreamCube/

1. Implementation Details

We implement both Multi-plane Synchronization and
DreamCube using PyTorch. For DreamCube, we utilize
Stable Diffusion v2 [7] as pre-trained backbone. At train-
ing time, we adopt the DDPM noise scheduler [2] with 1000
timesteps. We use a batch size of 4 for training, where the
resolution of RGB images and depth maps is 512 × 512.
Random rotation and flipping are used to expand the amount
and diversity of panorama training data. The depth rescal-
ing parameter s is randomly sampled from a uniform distri-
bution in [0.2, 1.0] during training. We froze the VAE and
fine-tuned the diffusion U-Net for 10 epochs. We use the
AdamW optimizer with a learning rate of 2 · 10−5. The en-
tire training process took approximately two days on four
Nvidia L40S GPUs. At inference time, we adopt the DDIM
noise scheduler [8] with 50 sampling steps. The depth
rescaling parameter s is fixed to 0.6 for inference.

2. Data Processing Pipeline

All panorama data needs to be processed into a unified for-
mat, including RGB cubemaps, depth cubemaps, and image
captions for each cube face. For datasets not originally in
cubemap format, we apply standard perspective projection
to produce cubemaps. Next, we adopt BLIP-2 [5] to obtain
image captions of all cube faces. While the Structured3D
dataset includes depth data, the other datasets only contain
RGB data. To annotate the depth of these panoramas, we
build a high-resolution panorama depth estimation pipeline
by connecting the existing panorama depth estimation
work Depth Anywhere [9] and the image-guided depth up-
sampling work PromptDA [6], which supports panoramic
depth estimation at 4K resolution. We use this pipeline to
perform depth estimation on equirectangular-based panora-
mas and then project the obtained depth panoramas into
cubemaps.

† Corresponding author.

3. More Analysis
We further provide efficiency, ablation, robustness, and gen-
eralization analyses to evaluate the proposed method.

Efficiency analysis. We provide an efficiency analysis
of our approach in Table 1 compared to the baseline model,
Stable Diffusion v2 (SD2) [7]. Among all synchronized
operators, synchronized Self-Attention (“+SyncSA”) incurs
the most computational cost, increasing TFLOPs by 76.1%
and latency (ms) by 113.1% than no synchronization (“No
Sync.”). This accounts for 86.0% of the latency cost and
almost 100% of the TFLOPs cost incurred by our approach.

Table 1. Efficiency analysis. We evaluate the computational effi-
ciency of SD2’s and DreamCube’s U-Nets in a single forward pass
and report the metrics: TFLOPs and Latency (ms).

Methods FLOPs (T) Latency (ms)

SD2’s U-Net batch-size=1 0.804 35.4
batch-size=6 4.826 138.8

DreamCube’s
U-Net

No Sync. 4.827 139.4
+SyncSA 8.502 297.1

+SyncConv 4.827 144.3
+SyncGN 4.827 152.0
All Sync. 8.502 322.7

Ablation analysis of DreamCube. We analyze different
components of DreamCube, with results shown in Table 2.
We evaluate both RGB and depth panorama generation on
the Structured3D test split [12], following the standard eval-
uation protocol. Both XYZ Positional Encoding (“XYZ
Pos.”) and Multi-plane Synchronization (“Sync.”) improve
performance, with “Sync.” yielding the most substantial
gains, which reduces FID by 8.77 and improves δ-1.25
by 0.103. Specifically, Synced Self-Attention (“SyncSA”)
contributes the most performance gain compared to other
synced operators. Besides, we further provide a qualitative
ablation analysis of XYZ Positional Encoding in Figure 1.
Our design effectively alleviates line artifacts and content

1

https://yukun-huang.github.io/DreamCube/


Table 2. Ablation analysis of DreamCube, where the perfor-
mance evaluation is performed on the Structured3D test split [12].
Both proposed Multi-plane Synchronization and XYZ Positional
encoding bring performance improvements.

Methods RGB Depth
FID ↓ IS ↑ δ-1.25 ↑ AbsRel ↓

w/o XYZ Pos. 13.66 5.57 0.784 0.136
w/o Sync. 21.35 5.62 0.684 0.168

w/o SyncSA 24.38 5.78 0.715 0.158
w/o SyncConv 19.62 5.60 0.779 0.139
w/o SyncGN 18.35 5.51 0.784 0.135

DreamCube (Ours) 12.58 5.50 0.787 0.133

XYZ Positional Encoding (Ours) 

UV Positional Encoding (CubeDiff) 

Visualization Case 1 Case 2

Case 1 Case 2Visualization

Figure 1. Ablation analysis of XYZ Positional Encoding. We
present the qualitative results of the back view of cubemap, where
the UV positional encoding introduces discontinuous numerical
steps. This leads to line artifacts (Case 1) and incoherent visual
contents (Case 2), as indicated by the red dashed box. In contrast,
our proposed XYZ positional encoding alleviates these issues in
both cases, as shown within the green dashed box.

incoherence compared to UV Positional Encoding.
Robustness analysis of DreamCube. DreamCube takes

single-view RGB-D images as input for cubemap genera-
tion. To evaluate the robustness of DreamCube, we test
various types of RGB-D inputs and provide the generated
results in Figure 2. Specifically, we test real-world inputs
captured by sensors [1]. Unlike synthetic training data,
real-world inputs have low-resolution depth maps and non-
standard camera views. Even so, our method is still able to
generate reasonable panoramas with high-resolution depth
maps, as shown in Figure 2a. In addition, we also test in-
puts with extreme camera views (e.g., elevation and FoV).

Real-world Inputs Generated RGB-D Panorama

(a) Generated results from real-world inputs captured by sensors [1]. Even
though the input depth is low-resolution (as indicated by the black dashed
circles), our method is still able to generate high-definition depth maps (as
indicated by the green dashed circles).

Elevation = -45.0

Elevation = 0.0 (In-domain)

Elevation = 45.0

FoV = 45.0

FoV = 90.0 (In-domain)

FoV = 135.0

(b) Generated results from inputs with extreme viewing angles, where the
green dashed boxes highlight the input views.

Figure 2. Robustness analysis of DreamCube to out-domain
RGB-D inputs from real world and extreme viewing angles.

DreamCube struggles to generate correct panoramas under
inputs with extreme elevation angles, but shows robustness
to perturbations of the FoV, as shown in Figure 2b.

Generalization analysis of DreamCube. To evaluate
DreamCube’s generalization capabilities, we present out-
domain generation results in Figure 3, where the input
RGB images are generated from Flux.1-dev [4]. We ob-
tain the corresponding input depth map using Depth Any-
thing v2 [10]. Despite the significant domain gap between
these inputs and our training distribution, DreamCube suc-
cessfully generates coherent and visually plausible RGB-D
panoramas, demonstrating its strong generalization ability.



Input View Converted EquirectangularGenerated Cubemap

Figure 3. Out-domain RGB-D panorama generation. The RGB-D inputs are obtained by Flux.1-dev [4] and Depth Anything v2 [10].
DreamCube demonstrates generalization ability on diverse inputs, maintaining high-quality RGB appearance and geometric consistency.

4. Panorama-to-3D Reconstruction

4.1. Implementation

The generated RGB-D panoramas contain the direction and
distance of each pixel, so a colored 3D point cloud can
be obtained by projecting all pixels into 3D space. We
can further convert the point cloud into different 3D rep-
resentations, such as 3D meshes and 3D Gaussians [3].
Note that these conversions can be achieved either by dif-
ferentiable optimization or by handcrafted algorithms. We

choose handcrafted algorithms for fast 3D scene reconstruc-
tion in seconds from RGB-D panoramas. Specifically, for
3D mesh reconstruction, we use the obtained point cloud as
vertices, and the vertex colors are assigned by the RGB val-
ues of the corresponding pixels. The connections between
vertices can be extracted based on the adjacency relation-
ship of image pixels. For 3D Gaussians, the position and
color of each Gaussian point can be directly assigned from
the colored point cloud, while other properties are inferred
using a method similar to WonderWorld [11].



Generated RGB-D Cubemaps Reconstructed 3D Meshes Reconstructed 3D Gaussians

Figure 4. Panorama-to-3D scene reconstruction. Based on the RGB-D cubemap generated by DreamCube, we can reconstruct the
corresponding 3D scenes in seconds and obtain both 3D mesh and 3D Gaussian [3] representations.

Generated

RGB-D Images

3D Point Cloud

From Equirectangular

3D Point Cloud

From Cubemap

Figure 5. Qualitative comparison of 3D point clouds recon-
structed from equirectangular-based and cubemap-based RGB-D
panoramas. Equirectangular panoramas produce an uneven, ring-
shaped 3D point distribution dense near the poles, while cubemap
panoramas yield a more uniform and regular distribution.

It is worth mentioning that different panoramic projec-
tions affect the quality of the reconstructed 3D scene. For

equirectangular-based RGB-D panoramas, due to the sig-
nificant geometric distortion at the poles, the reconstructed
3D point cloud will be unevenly distributed and particularly
dense at the top and bottom poles. In contrast, the distribu-
tion of 3D points from RGB-D cubemap is more uniform
and regular, as shown in Figure 5.

4.2. Results
An important application of DreamCube is fast 3D scene
generation. Benefiting from the joint RGB-D panorama
generation model and the rapid panorama-to-3D projection
algorithm, our approach can achieve 3D scene generation
from a single view in about ten seconds. We present the
visualized results of the generated 3D scenes in both 3D
meshes and 3D Gaussian representations, as shown in Fig-
ure 4. The visual quality of the reconstructed 3D scene
is comparable to that of the original panorama. Addition-
ally, we analyze the impact of different formats of RGB-D
panoramas on 3D reconstruction, as illustrated in Figure 5.
The 3D point distribution derived from equirectangular-
based panoramas is uneven, exhibiting a ring-shaped pattern
with particularly dense points near the poles. In contrast,
the 3D point distribution from cubemap-based panoramas
tends to be more uniform and regular.

5. Limitations
Limitations of our method include high computational cost
and restricted input conditions. First, DreamCube samples
six image latents simultaneously, which increases computa-
tional demands and limits the scalability of training batches.



However, compared to existing panorama generation meth-
ods, our method has the superior computational utilization
(effective pixel ratio obtained at the same computational
cost), because it uses a less distorted cubemap instead of
equirectangular, and does not require redundant FoV over-
lapping for seam continuity. Second, DreamCube is trained
with cubemap’s front face as input conditions. When the
input distribution deviates from the training domain, for ex-
ample, non-frontal view or extreme FoV, the generated re-
sults may fail, as shown in Figure 2.

References
[1] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,

Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe,
Daniel Kurz, Arik Schwartz, and Elad Shulman. ARK-
itScenes - A Diverse Real-World Dataset for 3D Indoor
Scene Understanding Using Mobile RGB-D Data. In Neural
Information Processing Systems, 2021. 2

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffu-
sion Probabilistic Models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 1

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics,
42(4), 2023. 3, 4

[4] Black Forest Labs. Flux.1-dev. https :
/ / huggingface . co / black - forest - labs /
FLUX.1-dev, 2025. Accessed: 2025-01-19. 2, 3

[5] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In In-
ternational conference on machine learning, pages 19730–
19742. PMLR, 2023. 1

[6] Haotong Lin, Sida Peng, Jingxiao Chen, Songyou Peng, Ji-
aming Sun, Minghuan Liu, Hujun Bao, Jiashi Feng, Xiaowei
Zhou, and Bingyi Kang. Prompting depth anything for 4k
resolution accurate metric depth estimation. arXiv preprint
arXiv:2412.14015, 2024. 1

[7] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1

[8] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing Diffusion Implicit Models. In International Conference
on Learning Representations, 2021. 1

[9] Ning-Hsu Albert Wang and Yu-Lun Liu. Depth Any-
where: Enhancing 360 Monocular Depth Estimation via
Perspective Distillation and Unlabeled Data Augmentation.
Advances in Neural Information Processing Systems, 37:
127739–127764, 2024. 1

[10] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth Any-
thing V2. Advances in Neural Information Processing Sys-
tems, 37:21875–21911, 2024. 2, 3

[11] Hong-Xing Yu, Haoyi Duan, Charles Herrmann, William T
Freeman, and Jiajun Wu. Wonderworld: Interactive 3d

scene generation from a single image. arXiv preprint
arXiv:2406.09394, 2024. 3

[12] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,
and Zihan Zhou. Structured3D: A Large Photo-Realistic
Dataset for Structured 3D Modeling. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part IX 16, pages 519–535.
Springer, 2020. 1, 2

https://huggingface.co/black-forest-labs/FLUX.1-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev

	Implementation Details
	Data Processing Pipeline
	More Analysis
	Panorama-to-3D Reconstruction
	Implementation
	Results

	Limitations

