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Figure 1. Comparison of generalization capabilities introduced by
offset: Models with offset A = (0, 0) tend to generate consistent
images, leading to foreground objects appearing in background
scenes.

1. Details about the Data Generation

1.1. Generation of Text Prompts

To generate diverse fused data, we first create a sufficiently
rich set of text prompts. For this purpose, we divide the
process into two parts: foreground and background. In the
foreground, the main subjects include animals, plants, hu-
mans ', pets, logos 2, and products. For the background,

we collect a certain amount of images from website * and
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TProject Lead.

Corresponding Author.

Thttps://huggingface.co/datasets/k-mktr/improved-flux-prompts-
photoreal-portrait

Zhttps://huggingface.co/datasets/logo-wizard/modern-logo-dataset

3https://unsplash.com/s/photos/free-images

utilize GPT-4o to extract realistic background prompts, en-
suring coverage of various real-world scenarios. During the
text prompt generation phase, we randomly sample a num-
ber of examples from the foreground and background, and
let GPT-40 classify them into foreground, background, and
fused image text descriptions. These descriptions are then
fed into our data generation model to produce the fused
data.

1.2. Training Details about the Data Generation
Model

Starting with the first batch of data, we use Flux-Dev as the
base model. Input images are randomly scaled to 512, 768,
or 1024 resolutions, and the model is trained for 10k iter-
ations on 8 A100 GPUs using the Prodigy optimizer. Two
models are trained: one with offset A = (0,w) and the
other with offset A = (0,0). The former is designed to
produce diverse data, while the latter focuses on generat-
ing data with varying scales. After training, the generated
results are first filtered using GPT-40, followed by manual
selection of high-quality fusion data for the next training
iteration.

1.3. Effectiveness of the Offset A

We experiment with two offset configurations: A = (0, w)
and A = (0,0). The results demonstrate that models
trained with A = (0, w) exhibit better generalization, ef-
fectively handling scenarios not included in the initial small
dataset. For instance, when the first training iteration is con-
ducted using fused data from placement scenarios selected
from dataset [6], the model trained with A = (0, w) gener-
ates differentiated results for other scenarios, such as hand-
held and wearable contexts, producing distinct backgrounds
and fused images. As shown in Fig. 1, models trained with
A = (0,0) exhibit stronger consistency, often generating
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Figure 2. Misalignment often occurs when A = (0, w). “Gradi-
ent Comparison” illustrates the gradient comparison between the
background and the fused image.

similar backgrounds and fused images.

However, when A = (0, w), although it demonstrates
superior capabilities in generating diverse and fused data, it
also tends to cause misalignment or inconsistencies in the
background. As illustrated in the Fig. 2, to better visualize
this misalignment, we compute the gradient maps of both
the background and the fused image, and combine them into
a single image for visualization in RGB format, referred
to as “Gradient Comparison”. Specifically, the red chan-
nel represents the gradient map of the fused image, while
the blue channel corresponds to the gradient map of the
background. When the background is perfectly aligned, the
two gradient maps merge into purple. Conversely, notice-
able red or blue regions indicate misalignment. This phe-
nomenon highlights that the background and the fused im-
age are not fully consistent. In contrast, when A = (0,0),
the alignment improves significantly, with the background
predominantly appearing purple, indicating higher consis-
tency. Meanwhile, we observed that this misalignment be-
comes more pronounced when generating multi-scale im-
ages. Therefore, only A = (0,0) is used for generating
multi-scale fused images.

1.4. Effectiveness of the Existing LoRA.

To enhance the diversity of data generation, we incorporate
various styles of LoRA into the trained generative model.
As shown in Fig. 3, we experiment with AntiBlur LoRA 4
Realism LoRA °, and Asian Ethnicity LoRA °. Further-
more, our generative LORA can be directly applied to other

“https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur
Shttps://huggingface.co/strangerzonehf/Flux-Super-Realism-LoRA
Shttps://huggingface.co/Shakker-Labs/AWPortraitCN
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Figure 3. The impact of different style LoRAs on the generation
of fused data.

Original+Flux-DEV Original+PixelWave

Figure 4. The impact of different FLUX-based base models on the
generation of fused data.

FLUX-based fine-tuned base models to produce diverse im-
ages. As illustrated in Fig. 4, we test multiple base models,
including Flux-DEV and PixelWave .

1.5. Data Filtering

To ensure the high quality of the fused data, we perform
further filtering based on the generation performance of the
two offset types and their corresponding models. Specifi-
cally, we utilize GPT-4o to filter the data under three con-
ditions: (1) the object in the foreground image does not
match the object in the fused image; (2) remnants of the
foreground object or the foreground object itself are present
in the background image; and (3) the image exhibits signif-
icant quality or aesthetic issues. Fig. 5 illustrates examples
of fused data filtered out by GPT-40 under these conditions.

To address the offset artifacts observed in the data gen-
erated by the model with offset A = (0,2), we calcu-
late the Dice score between the gradient maps of the back-
ground image and the fused image within the outer 100-
pixel boundary. A low Dice score indicates a mismatch be-
tween the edges of the background and the fused image,
signifying an offset artifact. These offset-affected samples

"https://huggingface.co/mikeyandfriends/PixelWave_FLUX.1-dev_03
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Figure 5. Three types of cases filtered out by GPT-4o.

Indoor Outdoor Summary
Simple Complex Simple Complex
Object 8,574 3,475 10,551 8,827 31,427
Animal/Pet 2,405 1,250 2,373 2,181 8,209
Human 1,930 1,106 2,377 2,555 7,968
Logo 1,539 31 400 11 1,981
Style Transfer 183 46 2,064 1,084 3,377
handheld pets 3,943 2,162 4,835 4,469 15,409
handheld objects | 1,902 287 4,304 1228 7,721
wearable 2,490 135 4,308 1,098 8,031

Summary [ 22,966 8,492 31,212 21,453 84,123

Table 1. The number of fused images across various scenarios.

are filtered out.

1.6. Data Analysis

Through the above generation strategy and quality filtering,
we ultimately obtained an 84k high-quality fusion dataset.
In Tab. 1, we provide a detailed breakdown of the number
of fused data for each scenario, along with a detailed clas-
sification based on indoor and outdoor settings, as well as
simple and complex scenes.

Additionally, we analyzed the resolution distribution of
the images in our dataset. As shown in Fig. 7, our data spans
arange from 600 to 1400 pixels, without being restricted to
a fixed resolution.

1.7. Multi-Foreground Generation

After training the current data generation model, it demon-
strates a certain generalization capability to generate fused
scenes with multiple foregrounds when provided with two
foregrounds prompts, as shown in Fig. 6. This verifies
that our data generation model can generalize to multi-
foreground data production, which is particularly important
for scenarios where occlusion or nesting relationships exist
between foreground objects. In the future, we will further
explore the generation of multi-foreground fusion data.
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Figure 6. Visualization of Multi-Foreground fusion data.

1.8. Data Visualization

Our dataset encompasses a diverse range of scenes and fore-
ground objects. As shown in Fig. 10, the foregrounds in our
dataset include products, people, animals, plants, vehicles,
and natural objects. “Gradient Comparison” refers to the
gradient comparison between the background and the fused
image, while “Copy-Pasted Image” indicates directly copy-
ing the foreground and pasting it onto a specified position in
the background. Fig. 11 further illustrates image examples
from various fusion scenarios in our dataset, such as style
transfer, logo printing, handheld, and wearable applications,
while also showcasing data at different scales.

2. Details about the DreamFuse

2.1. Details about the Vision Reward (VR) Score in
Evaluation

To better evaluate the fusion results, we use the Vision
Reward [7] (VR) Score, which measures quality by in-
putting the image and multiple questions into a vision-
language model [4] (VLM) to obtain comprehensive, multi-
dimensional scores. We selected eight questions to evalu-



oy 0.35

14001 0-30

1200+
0.20

z
o
T 1000
T 0.15
8001 O 0.10
6001 @ o 0.0

° | H

600 800 1000 1200 1400
Width

Figure 7. Distribution of image resolutions.

Method \ Vision Reward Score
ControlCom [8] 0.72
Anydoor [1] 1.4
MADD [3] 0.21
MimicBrush [2] 1.78
Ours 3.45

Table 2. Quantitative evaluation results on FOSCom dataset.

ate the images from multiple dimensions. Each satisfactory
answer is assigned a score of +1, while an unsatisfactory
answer deducts a score of -1. The eight questions are for-
mulated as follows:

* Are the objects well-coordinated?

¢ Is the image not empty?

* Is the image clear?

» Can the image evoke a positive emotional response?

* Are the image details exquisite?

* Does the image avoid being hard to recognize?

* Are the image details realistic?

e Is the image harmless?

2.2. The Pseudo-code for LDPO.

As shown in Algorithm 1, we present the pseudo-code of
LDPO. LDPO optimizes the model at each denoising step,
directly optimize DreamFuse based on human preferences.
By using copy-pasted data as negative samples, we enhance
the background consistency and foreground harmony in the
model’s fusion results.

2.3. Performance of DreamFuse in Real-World Sce-
narios

The TF-ICON dataset already includes some real-world im-
ages. To further validate the effectiveness of DreamFuse in
real-world scenarios, we conducted additional experiments
on the FOSCom [8] dataset, a fusion dataset composed en-
tirely of real images. The dataset contains only foreground
and background components, including 640 background

Algorithm 1 Localized Direct Preference Optimization
Loss (LDPO)

1: Dataset: Fusion dataset D' = {(c;, z ¢, zp, 2%, z})}
2: Input:
€p: DiT with LoRA parameters from the first train-
ing stage.
€rep: Frozen DiT with LoRA parameters from the
first training stage.
p: Text prompt dropout probability.
a: Dilation factor.
[: Regularization parameter.
3: Define M (f):
M(f)=1if f € a-Bbox(zy),else M(f) =0 ©
Localized foreground region.
5: for fusion data (c;, x5, xp, 2%, 2!) € D’ do
6: Sample noise and interpolate latents:
7: t < Random(0, 1), z,, — RandNoise
8
9

»

P (1= )z¥ +ta, ot (1 —t)zl +to,
: c? + Dropout(c;, p)
10: Model predictions:

11 V¥ eg(cl xp,my, al), vl eo(cl, xy, mp, 2h)

12: CRAPR S ref(, xy, xp, ), vief —
eref(cf7 Tf, Ty, l’é)

13: Calculate velocities and errors:

14: v =z — 2, [ a:i

15: erry < [|lvg —v¥|%, errl « ||vh —o!]|?

6 errt, e ot — o0l el [l — of]?

17: Compute differences:

18: waige <= M - (errg —errt, ;) + (1 — M) - (errly —
errlref)

19: Laite < M - (errly — errief) +(1—-M)- (erry —
errts)

20: Compute loss:

21: Lyipro « —log(sigmoid(—0.5 - 3 - (waifr — Laitr)))

22:  Update model: € < ¢y

23: end for

images collected from the Internet. Each background im-
age is paired with a manually annotated bounding box and
a foreground image from the MSCOCO [5] training set.
Since the dataset lacks text descriptions of the fused im-
ages, we primarily compared the VR scores of the fusion
results. As shown in Tab. 2, our method outperforms the
second-best method by a margin of 1.76 in VR score. Fig. 9
presents the qualitative results of DreamFuse on the FOS-
Com dataset, demonstrating that DreamFuse achieves su-
perior performance in real-world scenarios. DreamFuse in-
tegrates the foreground harmoniously into the background,
generating realistic effects such as reflections and shadows.



(b) Some Failure Cases from Real-World Scenarios

Figure 8. More diverse examples and some failure cases.

2.4. Limitations

To further validate the generalizability of our method, we
test it on a wider range of real-world images. In Fig. 8 (a),
our model performs well under complex scenarios like chal-
lenging lighting, hand interactions, and partial occlusion.
We also observed several failure cases (Fig. 8 (b)), including
difficulty preserving face identity, extra limbs and failures in
try-on scenarios. These issues are mainly due to limitations
in the data generation process: (1) Due to the base model’s
bias toward Western facial features, identity preservation for
human foregrounds is often imperfect; (2) Over-preserved
backgrounds may introduce duplicated body parts; (3) The
training data has limited try-on samples, reducing general-
ization. The main bottleneck is the base generation model.
For example, FLUX tends to generate overly blurred back-
grounds, which differ from real distributions. Although we
applied LoRA-based deblurring, some issues remain. No-
tably, our pipeline is flexible and can adapt to stronger mod-
els in the future to further improve data quality.
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Figure 9. Qualitative comparisons on FOSCom dataset.
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Figure 10. Visualization about different foreground in DreamFuse dataset. “Gradient Comparison” refers to the gradient comparison
between the background and the fused image, while “Copy-Pasted Image” indicates directly copying the foreground and pasting it onto a
specified position in the background.
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Figure 11. Visualization about different fusion scenarios in DreamFuse dataset. “Gradient Comparison” refers to the gradient comparison
between the background and the fused image, while “Copy-Pasted Image” indicates directly copying the foreground and pasting it onto a
specified position in the background.
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