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1. Multi-Layer Dataset
1.1. Pipeline of Data Generation.
The detailed process for multi-layer data generation is il-
lustrated in Fig. 1. First, a prompt is randomly selected
from a large prompt dataset diffusiondb [4]. Subsequently,
this prompt is processed by GPT-4 to generate correspond-
ing foregrounds, backgrounds, and a complete descriptive
prompt. The descriptive prompt is fed into generation mod-
els like Flux to create images with resolutions ranging from
892 to 1152. Next, GroundingDINO [1] and the foreground
prompts are used to extract bounding boxes for the fore-
ground objects from the generated image. Entity segmenta-
tion identifies all entities in the image. Based on the depth
map [5], the foremost entity is selected. After matching it
with the bounding box using IoU, the entity mask is linked
to the text prompt. We then refine the entity mask using
a matting segmentation model, producing more detailed al-
pha channels and foreground layers. Finally, an inpainting
model uses the foreground mask to fill in the image. This
process is repeated to decompose all foregrounds and back-
grounds, resulting in complete foreground and background
layers.

Through this process, we automatically generated mil-
lions of multi-layer images. After manual filtering, we re-
move low-quality layers, such as those with foreign objects
in the completed backgrounds, inaccurate foreground seg-
mentation, or poor foreground quality. Finally, 400k high-
quality layer data is retained.

1.2. Dataset Analysis
We provide a detailed comparison between our dataset and
MuLAn [3] in Tab. 1. Compared to the MuLAn dataset,
we have more images, higher resolution, more categories,
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Dataset Images Resolutions Classes Instances
MuLAn [3] 44,860 600∼800 759 101,269
DreamLayer 408,187 896∼1152 1453 525,388

-TwoLayer 305,801 896∼1152 1379 305,801
-ThreeLayer 87,571 896∼1152 1322 175,142
-FourLayer 14,815 896∼1152 1045 44,445

Table 1. Dataset comparison between MuLAn and DreamLayer.

and a greater number of instances. Fig. 2 illustrates the
top ten most common categories across multi-layer images.
In the two-layer data, “person” is the dominant category,
largely due to the abundance of portrait examples in the
prompts. We deliberately reduced the generation of “per-
son” instances in the three-layer and four-layer datasets, re-
sulting in a more balanced category distribution for these
layers.

1.3. Visualization
Fig. 9, Fig. 10 and Fig. 11 showcase examples of multi-layer
images generated by our data generation pipeline. With the
support of multiple models, our multi-layer dataset achieve
high quality and resolution. They also feature logical layer
order and precise alpha channels. By leveraging the depth
map and sequential inpainting process, our method effec-
tively handles object occlusion. As a result, each layer is
nearly complete.

2. Implement Details
During training, we scale and center-crop the images to a
size of 512 × 512 as input. The model is initialized with
SD1.5 pre-trained weights. Intermediate results with a res-
olution of 16 are extracted from the four stages of the UNet
as the attention maps. Layer-shared self-attention is ap-
plied between TG = 850 and T = 1000, while shared
self-attention is applied across all steps. All loss weight
λnoise, λl, λc are set to 1. The initial learning rate is set to
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Methods (Bg)
Two Layers Three Layers Four Layers

AES↑ Clip↑ FID↓ AES↑ Clip↑ FID↓ AES↑ Clip↑ FID↓
LayerDiffusion [6] 6.034 28.426 81.491 5.438 27.839 95.813 5.564 28.907 117.485

DreamLayer 6.731 29.827 72.633 6.127 29.297 87.927 6.119 30.661 80.157

Methods (Fg)
Two Layers Three Layers Four Layers

AES↑ Clip↑ FID↓ AES↑ Clip↑ FID↓ AES↑ Clip↑ FID↓
LayerDiffusion [6] 6.124 30.404 64.406 5.782 29.849 43.889 5.652 29.646 45.210

DreamLayer 6.165 30.530 51.495 5.806 29.905 33.462 5.703 29.724 31.426

Table 2. Quantitative comparison of background and foreground image generation.
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Figure 1. The pipeline of multi-layer data preparation.

2× 10−6, with a contant rate scheduler applied for gradual
decay. Training started with the two-layer data for 60,000
steps, followed by training on the three-layer and four-layer
data based on the two-layer model. During inference, we
use 50 steps with the DDIM sampling strategy. In the Infor-
mation Retained Harmonization (IRH) process, latents be-
tween TH = 400 and T ′

H = 600 are retained, and blending
is performed at the latent level at TH .

3. Quantitative comparison of Bg&Fg layer
In the main text, we quantitatively compare the quality of
the final composite images. Here, we evaluate the genera-
tion quality of background and foreground layers in com-
parison to LayerDiffusion [6]. As shown in Tables Tab. 2,
our method achieves higher aesthetic scores for background
generation, particularly excelling in two-layer generation
with an improvement of approximately 0.7. Similarly, for
foreground generation, our method also outperforms Lay-
erDiffusion, further highlighting the effectiveness in multi-
layer generation tasks.

4. Ablation Study
4.1. The Context Map
We conduct a detailed investigation into the stages and steps
TG for extracting the Context Map from global image. As
shown in , among the four stages of the Unet, the clearest
context map for foreground object “toy car” is extracted at
the resolution res = 16. ther stages primarily capture tex-
ture details and image-specific patterns. At res = 16, the
focus is on the layout and general contours of objects.

For different TG steps, we observe that at TG = 850, the
context map contains sufficiently clear information. When
TG decreases, the context map becomes sharper. However,
this increases the steps of Layer-Shared Self-Attention, in-
troducing more global layer information. As a result, the
foreground layer cannot be effectively distinguished from
the global layer, leading to layer generation failure. To bal-
ance clarity and accuracy, we choose TG = 850.

4.2. Layer-Shared Self-Attention
LSSA is primarily used to maintain consistency across dif-
ferent image layers, a feature already effective in the origi-
nal SD15, as shown in Fig. 3. “Normal Attention” refers to
standard self-attention without any inter-layer interaction,
where each layer is generated solely based on its respec-
tive text prompt. “Shared Attention” involves layer interac-
tion through concatenation, as described in Eq. (1), which
brings a certain level of consistency—such as generating
similar yellow cars across layers. “Layer-Shared Attention”
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Figure 2. Top 10 most common categories in our Multi-Layer Dataset.
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Figure 3. Ablation Study on Layer-Shared Attention: “Normal At-
tention” refers to standard self-attention in SD15; “Shared Atten-
tion” involves layer interaction through concatenation and “Layer-
Shared Attention” incorporating global layer information.
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Figure 4. The effectiveness of mask attention in Image to Layer.

further enhances consistency by incorporating global layer

information into the foreground layer, as outlined in ??, re-
sulting in better alignment of the size and placement of the
toy car.

5. Image to Layer
In the Image to Layer process, we use DDIM inversion [2]
to revert the input image into its initial latent. During this
process, the input image is treated as a global image and
duplicated k + 1 times to form a layer batch. To ensure
clarity, we apple mask attention during inversion to isolate
the global layer from other layers, preventing information
from other layers from interfering with the global layer dur-
ing the inversion process. Specifically, in the Layer-Shared
Self-Attention process, we first concatenate all the noisy la-
tents zt ∈ Rh×w from different layers:

z̃ct = concat(z̃1t , · · · , z̃k+1
t ). (1)

Next, we generate a mask M ∈ Rh×(k+1)w based on z̃ct :

M(i, j) =

{
0, if j > kw

−∞, otherwise
(2)

After applying linear projections, we perform the masked
attention operation, formally as:

Oi
s = Softmax(

Qi
s(K

c
s)

T +M√
d

)V c
s . (3)

By applying mask attention to block the influence of other
layers on the global layer, we can decompose the input
image into multiple layers. As shown in Fig. 4, without
mask attention, information from the global layer mixes
with other layers during inversion. This often results in
foreground information remaining in the background layer.

6. More Qualitative Results
Fig. 6, Fig. 7 and Fig. 8 illustrate the results generated
by our DreamLayer on two-layer, three-layer, and four-
layer images, respectively. Under the guidance of the
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Figure 5. The context map results from global layer extracted at different resolutions and time steps.

global layer, our generated multi-layer images exhibit well-
organized layouts. The foreground objects align more nat-
urally with the background images, resulting in composite
images that are more harmonious. These composites also
include detailed elements, such as shadows, enhancing their
realism.
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Figure 6. Qualitative Results of two-layer images generated by DreamLayer.



Figure 7. Qualitative Results of three-layer images generated by DreamLayer.

Figure 8. Qualitative Results of four-layer images generated by DreamLayer.



Figure 9. Visulization of two-layer images in our multi-layer dataset.



Figure 10. Visulization of three-layer images in our multi-layer dataset.



Figure 11. Visulization of four-layer images in our multi-layer dataset.
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