
Edit360: 2D Image Edits to 3D Assets from Any Angle

Supplementary Material

This supplementary material provides in-depth details of the
Edit360 system, expanding on the technical and analytical
discussions from the main paper including:
• Section 7: A detailed analysis of Video 3D Diffusion

Models (V3DM), including V3D [6] and SV3D [54],
along with their strengths, limitations, and how Edit360
extends their applications to 3D editing.

• Section 8: Additional implementation details for Edit360,
focusing on multi-view generation, LLM-based instruc-
tion parsing, and the Spatial Progressive Fusion (SPF).

• Section 9: Provides more ablation experiments.
• Section 10: Discusses failure cases and future works.

7. Additional Details and Analysis of V3DMs

This section provides an analysis of the Video 3D Diffusion
Model (V3DM), detailing the methodologies of V3D [6]
and SV3D [54], and highlighting their strengths and limita-
tions. Based on these insights, we demonstrate how Edit360
integrates their advantages, overcomes their constraints, and
evolves into a powerful, time-efficient tool for 3D editing.

7.1. Technical details of V3D and SV3D

The pipelines for both V3D [6] and SV3D [54] consist of
two stages: dense-view image generation and high-quality
3D reconstruction.
Dense-view Video Generation. For dense-view image syn-
thesis, both models fine-tune pre-trained Stable Video Dif-
fusion (SVD) [1] architectures to generate orbital videos of
synthetic 3D objects. V3D generates videos by rendering
18 evenly spaced camera positions in the horizontal plane,
conditioned on a front-view image for semantic guidance.
The frames cover a full 360° view of the object and each
frame has a resolution of 512→512 pixels. SV3D gener-
ates videos with two types of camera positions: similar to
V3D, SV 3Du employs static orbits where all the cameras
are positioned at evenly spaced azimuth angles at a fixed
elevation; SV 3Dp allows for any specified rotation angles
and elevations of each camera position at evenly spaced az-
imuth angles. Both produce videos consisting of 21 frames
at a resolution of 576→576 pixels. We choose V3D and
SV 3Du for our experiments, as horizontal 360-degree edit-
ing effectively meets most editing requirements.
3D Reconstruction. The reconstruction pipelines for V3D
and SV3D are designed to transform dense-view video into
high-quality 3D assets. V3D not only uses space-carving-
based initialization [23, 30] to efficiently position 3D Gaus-
sian splats [20], but it can also extract the surface mesh us-
ing NeuS [56], enhancing its utility for real-world applica-

tions. SV3D utilizes a two-stage coarse-to-fine reconstruc-
tion process: the coarse stage employs a NeRF-based rep-
resentation [34] to reconstruct the SV3D-generated dense
views at a lower resolution, while the fine stage extracts
a mesh using marching cubes [7], and refines it with a
DMTet [45] representation, applying SDS-based [37] dif-
fusion guidance from SV3D at full resolution. Due to the
optimization with SDS, this process requires approximately
20 minutes. For our applications, we use the faster V3D
reconstruction method (i.e., without SDS loss), which com-
pletes the process in just two minutes. This effectiveness is
demonstrated in Figure 10, showcasing examples of high-
quality 3D assets reconstructed from dense views.

7.2. More Analysis for Limitations of V3DMs

V3DMs, represented by V3D and SV3D, leverage two ad-
vantages of video diffusion models: (1) temporal consis-
tency between frames, and (2) the ability to generate dense
sequences. These strengths translate into view consistency
in 3D generation and dense multi-view images that are ben-
eficial for subsequent reconstruction tasks.

However, despite these strengths, V3DMs face notable
limitations due to their reliance on sparse input views. As
discussed in Section 5.3 and illustrated in Figure 8, these
limitations include significant texture and shape loss in ar-
eas not directly visible in the input view. For instance, as
shown in Figure 11, when conditioned solely on a front
view of a bunny doll with wings, the model generates an in-
complete back side with missing wing details (second row).
Conversely, when using a back view input, the model pro-
duces a bunny with no recognizable facial identity in the
front view (third row). These observations highlight the
challenge of achieving coherent 3D representations from
single-view inputs.

Edit360 addresses these limitations through its novel
Anchor-View Editing Propagation algorithm (detailed in
Section 4). Edit360 extends V3DMs to multiple input
views, enabling seamless integration of user-provided views
with anchor views. Unlike traditional interpolation-based
methods, Edit360 injects conditioning inputs across all
frames during sampling, ensuring consistent propagation of
edits throughout the sequence. As shown in the fourth row
of Figure 11, Edit360 integrates edits like adding wings to a
bunny doll, ensuring smooth transitions between edited and
unedited regions. This approach preserves facial identity
from the front view while consistently propagating the edit-
ing information from the anchor view to other 360-degree
views of the 3D object.

Generated Dense-views Reconstructed 3D asset

Figure 10. 3D asset reconstruction from dense views using 3DGS [20].

8. Edit360 Pipeline Implementation Details

The Edit360 pipeline is designed to streamline the process
of 3D asset editing and reconstruction. The entire workflow,
including video generation and 3D reconstruction, can be
completed on a single GPU (e.g., NVIDIA RTX 4090 with
24 GB of memory). Below, we detail three key stages of
Edit360: multi-view generation (Section 8.1), edit instruc-
tion parsing with LLMs (Section 8.2), and the Spatial Pro-
gressive Fusion (SPF) (Section 8.3).

8.1. Multi-view Generation

This stage focuses on generating dense and consistent views
of a 3D asset, accommodating various input types, includ-
ing 3D models, single-view images (such as photographs of
real-world objects), and text descriptions. We denote the
number of generated views per asset as N .

8.1.1. Techniques for Different Input Types

Each input type is processed using tailored techniques to
ensure high-quality multi-view generation.
For 3D models, Edit360 utilizes Blender to render N views
of the object. The 3D model is imported into Blender,
where N cameras are placed around the object in a hori-
zontal plane, evenly spaced at intervals of 360/N degrees
in a counterclockwise arrangement. Each camera captures
a distinct perspective simultaneously, ensuring uniform and
consistent coverage of the object across all views.
For single-view inputs, such as a front-view photograph or
image, Edit360 utilizes a single-input V3DM (SV3D [54]).
The V3DM takes the single input as a reference and gener-
ates the remaining N ↑ 1 views, ensuring consistency and
coherence with the original input.

For text inputs, Edit360 first uses a text-to-image gener-
ation model, such as DALL·E [39], to generate an image
based on the provided textual description. This generated
image typically serves as the front view of the object, which
is then processed in the same manner as single-view image
inputs, using a single-input V3DM (e.g. SV3D [54]) to syn-
thesize the remaining N ↑ 1 views.

8.2. Parsing Editing Instructions with LLMs

Edit360 employs Large Language Models (LLMs), such as
GPT-4, to parse user-provided editing instructions and iden-
tify optimal perspectives, referred to as anchor views. This
process involves analyzing the instruction, breaking them
into actionable tasks, and selecting the viewing angles that
best suit the editing objectives. The implementation relies
on providing a carefully crafted prompt to the LLMs, which
guides the model to effectively understand and execute the
required tasks. An example of the prompt is as follows:

• Instruction Analysis and Task Breakdown:

– Analyze the editing instructions to identify specific
tasks, such as modifying an object’s appearance or
adding elements.

– If multiple tasks are present, process each task individ-
ually. Further analyze the instruction to pinpoint the
specific part of the object or scene requiring modifica-
tion and evaluate task visibility across different views.

• Optimal Anchor View Selection:

– For each task, determine the most suitable horizontal
viewing angle (anchor view) to clearly display the tar-
get area for editing.

SV3D
(Input the original

image)

SV3D
(Input the edited

front view)

Ours
(Input the edited

anchor (back) view
along with the front

view)

SV3D
(Input the edited

back view)

Figure 11. Dense views of the first editing example in Figure 1, illustrating the clockwise rotation results of SV3D and Ours. With only
the edited front view as input, SV3D generates an incomplete back view with missing wing details (red box). Conversely, using the edited
back view as input results in missing facial features in the front view (blue box). Our method integrates both views to produce consistent
and complete results across all angles.

– Assess visibility to ensure critical modifications are
visible from chosen angles (e.g., a backpack visible
from the back or wings requiring views from both front
and back). If necessary, select multiple angles to guar-
antee consistency and coherence across the 3D model.

• Standardized Output Format:

– Output the selected angles as discrete units of 360/N
degrees, formatted as a comma-separated list (e.g., “1,
9”).

– Provide only numerical outputs, avoiding additional
text or explanations for clarity and ease of integration.

• Examples for Anchor View Selection:

– Instruction 1: “Add a backpack and a hat to a person.”
Optimal Angles: “9, 1”
(Angle “9” for the backpack visible from the back, and

angle “1” for the hat visible from the front.)

– Instruction 2: “Add wings to a person.”
Optimal Angles: “1, 9”
(Wings are visible from both front and back views, re-
quiring both angles.)

– Instruction 3: “Place a logo on the left sleeve of a
shirt.”
Optimal Angles: “5”
(Angle “5” best captures the left side of the person.)

By leveraging this structured prompt, Edit360 ensures
the LLM consistently identifies the most appropriate anchor
view(s) for each modification task. This not only simplifies
the editing process but also enables precise, user-aligned
modifications while maintaining coherence across the
entire 3D representation.

Edit360
without LLM

 Editing from a
randomized

view (red box)

Edit360
with LLM

 Edited from
the anchor

view (red box)

SV3D
 Editing from

the front
view (red box)

Output

“Add a wing.”

“Add a wing.”

Input

Figure 12. Comparison of different view selection strategies for
3D editing. Top: SV3D editing from the front view fails to effec-
tively show the added wing. Middle: Edit360 without LLM using
a random view still produces suboptimal results. Bottom: Edit360
with LLM intelligently selects the back view as the anchor point,
resulting in a more appropriate and visible wing placement. Red
boxes indicate the views used for editing in each approach.

8.2.1. Evaluation of LLM View Selection Strategy

As shown in Figure 12, editing with GPT-4-selected views
rather than random view allows introducing editing-relevant
details in suitable views (e.g., wing details are more visible
from the back view than the front/side). Moreover, we eval-
uate GPT-4’s effectiveness in selecting anchor views using
a set of 100 editing instructions. GPT-4 successfully identi-
fies the appropriate editing views for all samples.

8.3. More details of Edit360’s Key Components

The Spatial Progressive Fusion (SPF) and Cross-View
Alignment algorithm (As shown in Figure 13) are designed
to propagate user-defined edits across all views in the 360-
degree representation, ensuring spatial and visual consis-
tency. This section provides illustration of Spatial Align-
ment (As shown in Figure 14), detailed explanations of the
dynamic weight adjustment strategies used during fusion,
techniques for edge and texture extraction in latent space
multi-scale fusion.

8.3.1. Detailed Configuration of Spatial Weights

Spatial Weighting (SW), as used in Equation 5, is a crucial
component of the SPF algorithm, ensuring consistent prop-
agation of user-defined edits across all frames in the 360-
degree representation. This subsection provides a detailed
explanation of how spatial weights are configured in the
SPF algorithm, including the spatial dynamic adjustment to
account for the cyclic nature of video sequences, the tem-
poral dynamics for balancing contributions during sampling

SFF with Multiple Anchor Views

"!

... ...

"#
Fused View Fused View

Fused View

Fused View

Fused View

Spatial Progressive FusionCross-View Alignment

""

Figure 13. Illustration of CVA and SPF with Multiple Anchor
Views (vi and vj). Edit360 can integrate multiple anchor views
into a seamless 360-degree fused sequence.

𝑉𝑝[𝑖]

𝑅(𝑉𝑝 𝑖)

𝑝 𝑝 + 1 … 𝑁 − 1 𝑁 1 2 … 𝑝 − 1

1 2 … 𝑝 − 1 𝑝 𝑝 + 1 … 𝑁 − 1 𝑁

Figure 14. Illustration of cicular-shift (CS) in Equation 4, showing
the rotation mapping used to align video sequence Xanchor with
Xfront.

steps, and the normalization process to ensure balanced in-
fluence from multiple anchor frames. While the following
details the dynamic adjustment of spatial weights, in prac-
tice, the weights can also be directly set or customized ac-
cording to specific requirements or prior knowledge.
Spatial Dynamics of Weight Adjustment. In the case of a
360-degree looped video sequence, where the first and last
frames are adjacent, so we define the distance to account for
the cyclic nature of the sequence. The complete formula for
the weight ωp(i) is given as:

ωp(i) = exp

(
↑min(|i↑ p|, N ↑ |i↑ p|)2

2ε2

)
, (7)

where N is the total number of frames in the video se-
quence, and min(|i↑p|, N↑ |i↑p|) represents the shortest
cyclic distance between frame i and the anchor frame p.
This adjustment accurately accounts for the cyclic nature of
the video sequence, ensuring smooth and consistent prop-
agation of the anchor frame’s influence across all views in
the 360-degree representation.
Temporal Dynamics of Weight Adjustment. During the
early stages of the sampling process, the goal is to distribute
the influence of anchor frames broadly across the sequence,
allowing edits to affect distant views. To achieve this, SPF
starts with a larger variance (e.g., ε = 5) in Equation 7. As
sampling progresses, since the editing information has al-
ready been injected, ε is linearly reduced to a smaller value
(e.g., ε = 2), concentrating the influence of anchor frames

on nearby views to refine local details. This progression
enables a balanced approach, combining global consistency
with precise local adjustments.
Normalization for Balanced Influence. To prevent any
single frame sequence from dominating the fusion process,
the weights are normalized to ensure that each frame main-
tains an equal total weight sum. Specifically, for each an-
chor frame sequence with weight ωp, the corresponding
weight assigned to the baseline sequence V0 is calculated
as 1 ↑ ωp. When multiple anchor sequences are present,
the total weight for each frame is normalized by dividing
the sum of weights by the number of anchor sequences, Np.
This process is formalized in Equation 5.

8.3.2. Multi-scale Fusion in Latent Space

To enhance visual fidelity and prevent over-smoothing dur-
ing the progressive fusion process, multi-scale fusion inte-
grates edge and texture features extracted from frame se-
quences. These features are incorporated to strengthen
structural alignment and enrich textural details, ensuring
the generated outputs are both consistent and visually de-
tailed. Specifically, we employ Sobel edge detection [19]
and a high-pass filter [12] to extract edge and texture de-
tails (Et,f , Tt,f , Et,a, Tt,a) from each frame in Xt,front and
Xt,anchor. The Sobel operator computes horizontal and ver-
tical gradients via 3→ 3 kernels:

Gx =




↑1 0 +1
↑2 0 +2
↑1 0 +1



 ↓ I, Gy =




+1 +2 +1
0 0 0
↑1 ↑2 ↑1



 ↓ I,

(8)
where ↓ denotes convolution and I is the input. The edge
strength is then:

E =
√
G2

x +G2
y. (9)

In addition, we extract high-frequency texture features with
a high-pass filter:

T =




0 ↑1 0
↑1 4 ↑1
0 ↑1 0



 ↓ I. (10)

We then perform fusion across multiple scales following
Equation 5 to produce Et, Tt, and Xt. The final fused frame
is computed as:

X̃i
t = w1 ·Xi

t + w2 · Ei
t + w3 · T i

t , (11)

where X̃i
t denotes the updated estimation of Xi

t . In the pro-
gressive fusion process, the weights w1, w2, and w3 are dy-
namically adjusted to balance contributions from the origi-
nal sequence, edge features extracted from the original im-
age, and texture features, respectively.

Add a cape to the supermanSPF CVA Add a snowman & string lights to the house in Winter

In
pu
t

In
pu
t

1) Add lightning patterns to
the sides of the car

2) Apply a matte pink wrap
and wheels to the car.

Figure	A.	More	editing	examples	of	real	photos.

Figure	B.	More	visual	ablation	studies.

Add head and lumbar pillows
& a tabletop to ergonomic chairs

Figure 15. Additional real-world editing examples using Edit360.
Our method produces geometrically consistent and visually plau-
sible results across diverse object categories and viewing angles.

SW MF CVA LPIPS ↔ PSNR ↗ SSIM ↗ CLIP-S ↗ MSE ↔
0.11 20.57 0.83 0.85 0.02

✁ 0.10 21.13 0.85 0.85 0.02
✁ ✁ 0.08 20.90 0.87 0.85 0.02
✁ ✁ ✁ 0.07 22.17 0.90 0.88 0.02

Table 4. Ablation study on the key components of the SPF mod-
ule, Spatial Weighting (SW) and Multi-scale Fusion (MF), show-
ing their individual contributions to performance.

Model LPIPS ↔ PSNR ↗ SSIM ↗ CLIP-S ↗ MSE ↔
Edit-SV3D (v0) 0.08 21.70 0.86 0.89 0.02

Edit-SV3D (v0 & v7) 0.08 21.78 0.86 0.89 0.02

Edit-SV3D (v0 & v11) 0.07 22.34 0.87 0.88 0.02

Edit-SV3D (v0 & v7 & v14) 0.07 22.37 0.87 0.87 0.02

Table 5. Ablation study demonstrating the ability of Edit360 to
effectively fuse different numbers of views from various angles.

9. More Ablation

We present more ablation studies based on the experimental
settings outlined in Section 5.1.
The Key Components of SPF. As shown in Table 4, we
evaluate the impact of two key components of SPF: Spa-
tial Weighting (SW), Multi-scale Fusion (MF). The baseline
model use simple linear interpolation with equal weights
across all frames. The results highlight the importance of
each component in the fusion process.
Impact of Fused Views. As shown in Table 5, using the
front view v0 as a baseline, we experiment with fusing other
view inputs like viewpoint v7, v11, and a combination of v7
and v14. The results demonstrate robust performance of our
Edit360 across all view combinations and angles.

10. Failure Cases and Future Work

Failure cases. While video diffusion models maintain good
frame consistency for single-object views, they struggle
with spatial relationships in multi-object scenes due to the
lack of 3D priors, leading to object adhesion artifacts.
Scene-level applicability. Our method focuses on object-
level editing due to the scope of current pre-trained models.
With advances in video models for 3D scene generation,
extending to scene-level editing is a promising direction.

	Introduction
	Related Works
	Overall Framework
	Preliminaries
	The Pipeline of Edit360

	Anchor-View Editing Propagation
	Spatial Progressive Fusion
	Cross-View Alignment

	Experiments
	Experimental Setup
	3D Asset Editing
	Novel Multi-View Synthesis
	Ablation Studies

	Conclusions
	Additional Details and Analysis of V3DMs
	Technical details of V3D and SV3D
	More Analysis for Limitations of V3DMs

	Edit360 Pipeline Implementation Details
	Multi-view Generation
	Techniques for Different Input Types

	Parsing Editing Instructions with LLMs
	Evaluation of LLM View Selection Strategy

	More details of Edit360's Key Components
	Detailed Configuration of Spatial Weights
	Multi-scale Fusion in Latent Space

	More Ablation
	Failure Cases and Future Work

