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Figure 1. Visualization of images and their corresponding vessel-
ness filtering results. In the CT images, regions with high intensi-
ties represent hepatic vessels, while dark regions indicate tumors.
In the paired vesselness filtering results, high-intensity patches
correspond to vessel candidates, with noise visibly present along
the liver border.

Table 1. Enhanced ratio of labeled slices on the HVS task brought
by refined labels (%).

Hepatic vessel segmentation (HVS)

Label LiVS MSD8
3DIRCADb

(Testing)
Original 20.26±12.77 71.96±12.29 78.87±7.27Refined 70.26±11.75 72.54±11.90

In the supplementary material, we provide detailed expla-
nations of the vesselness filter (Appendix A), the flexible
convolution block (Appendix B), the segmentation fusion
in D2SD (Appendix C), along with additional experimen-
tal and visualization results, including refined hepatic ves-
sel labels (Appendix D), ablation studies (Appendix E), our
curated HVS-External dataset (Appendix F), the robustness
of loss functions (Appendix G), and the trade-off between
precision and recall of loss functions (Appendix H).

Table 2. Quantitative improvement on the HVS task brought by
refined labels. The segmentation model is nnU-Net.

Dataset Label Dice(%,↑) HD(↓)

HVS Original 56.69±8.42 10.83±4.28
Refined 60.15±9.49 10.00±4.22

HVS-External Original 63.09±10.90 4.02±1.43
Refined 63.78±9.27 3.69±1.17

Conv 3Conv 3Conv 3

Conv 1Conv 1Conv 1Conv 1

Conv 1

1×2×3×

Feature maps

Figure 2. Details of flexible convolution block with diverse recep-
tive fields.

A. Vesselness Filter

In this section, we elaborate on the details of vesselness fil-
ters and present several vesselness maps for visualization.
Image derivatives, including first-order derivatives for bor-
der detection and second-order derivatives for shape extrac-
tion, are commonly used to highlight vascular structures
in images [1]. Hessian matrix analysis is a representative
method based on second-order derivates that can distinguish
rounded, tubular, and planar structures [3]. Vesselness fil-
ters also employ eigen-decomposition of the Hessian matrix
to measure tubularity and enhance vessel regions [8]. Let H
be the hessian matrix of a voxel in CT volume, and e1, e2
and e3 be the three eigenvectors of H with corresponding
eigenvalues of λ1, λ2 and λ3 (|λ1| ≤ |λ2| ≤ |λ3|). The
tubularity is defined as [9]:

|λ1| ≈ 0, λ2 ≈ λ3 ≪ 0. (1)

Based on this, the Jerman [6] vesselness filter used in our
framework further regularizes λ3 to reduce the sensitivity



Table 3. Quantitative comparison on the HVS-External test set stratified by diseases of the subjects.

HVS-External

Model Fatty liver Cirrhosis Tumor Healthy
Dice(%,↑) HD(↓) Dice(%,↑) HD(↓) Dice(%,↑) HD(↓) Dice(%,↑) HD(↓)

nnU-Net [5] 53.97±1.97 3.90±0.09 69.83±9.15 2.78±0.64 62.88±10.14 3.91±1.29 62.09±2.75 3.94±1.08
Shit et al. [11] 50.80±3.10 4.16±0.11 63.48±2.72 3.51±0.18 57.18±7.33 4.40±1.31 49.61±8.00 4.96±0.72

Kirchhoff et al. [7] 58.88±1.69 4.08±1.23 81.05±2.22 3.21±0.92 70.28±9.60 3.35±1.16 68.73±4.72 3.56±1.16
TransU-Net3D [2] 51.68±7.78 6.03±2.99 38.18±31.76 4.43±1.73 39.93±21.86 9.76±9.17 56.60±12.92 5.23±1.67

DSC-Net [10] 71.44±4.51 3.10±0.39 80.50±3.68 2.73±0.66 74.86±7.04 3.18±1.34 71.26±7.90 3.69±1.10
HarmonySeg 73.15±1.83 3.74±0.11 80.59±4.61 2.20±0.55 75.67±7.36 3.61±1.31 74.75±6.05 3.37±1.18
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Figure 3. Visualization of original and refined hepatic vessel la-
bels in LiVS. The liver is rendered in gray, while the original and
refined vessel labels are denoted in yellow and cyan, respectively.
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Figure 4. Visualization of predicted hepatic vessel labels in the test
set of MSD8. The gray color shows the liver and the cyan color
denotes the labels. Note that the original label of MSD8’s test set
is unavailable.

for those low-contrast regions:

F =


0, λ2 ≤ 0 or λp ≤ 0,

1, λ2 ≥ λp

2 > 0,

λ2
2(λp − λ2)(

3
λp+λ2

)3, otherwise,
(2)

in which:

λp =


λ3, λ3 > τ maxx λ3(x),

λ3 > τ maxx λ3(x), 0 < λ3 ≤ τ maxx λ3(x),

0, otherwise,
(3)

where τ ∈ [0, 1]. Benefiting from this regularization, the
Jerman vesselness filter becomes robust even when facing
non-homogeneous vessel intensity. To reveal the effective-

ness of the vesselness filter, we give examples of paired ves-
selness filtering results in Figure 1. As shown in the figure,
the vesselness filter can highlight liver vessel candidates of
different sizes, even for cases in which tumors exist.

B. Flexible Convolution Block
Diversifying the receptive fields of convolutions is an effec-
tive way to adapt models to targets of different sizes [15].
In our study, the sizes of liver vessels are also various, so di-
verse receptive fields are beneficial in enhancing the model
capability. The flexible convolution block we designed is
shown in Figure 2. To avoid the gridding effect of dilated
convolution for extracting local details of vessels, our flexi-
ble convolution block provides different receptive fields by
stacking the convolutions in parallel rather than using di-
lated convolution. After the feature maps are fed into this
block, they are further encoded by parallel stacked convo-
lutions with different receptive fields [12]. Then a 1× 1× 1
convolution integrates all features and compresses the chan-
nel for output. Flexible convolution blocks are used at the
encoder and the shallow query module (F-Conv in (c) of
Figure 2 in the manuscript).

C. Segmentation Fusion in D2SD
Vessels of varying sizes exhibit distinct feature representa-
tions at different scales. Larger vessels can be effectively re-
flected in multi-scale feature maps. Yet, for smaller vessels,
the information loss caused by successive convolutions and
pooling tends to impair their feature representation, which
is also one of the motivations why skip connections have
been introduced. To mitigate this, the D2SD strategy uses
low-cost pre-decoders at multiple scales to capture scale-
specific information and aggregate multi-scale outputs for
final segmentation, as shown in Figure 5. It is important to
clarify that the D2SD is distinct from the deep supervision,
which does not compute loss for each decoded result. Con-
cretely, our model’s encoder-decoder architecture employs
F-Conv blocks for feature extraction, where feature maps
are flattened directly as tokens (rearranging ’b c z h w’ to
’b c (z h w)’) and then fed into the DMQ and SQ mod-
ules. During decoding, the DMQ module outputs undergo
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Dice(%) for D2SD
ablation study on the
HVS task. F(*) means
the D2SD fuses * to
obtain the final
segmentation.

Dice 55.88 Dice 61.30 Dice 69.05 Dice 72.06

Figure 5. Qualitative and quantitative analysis of segmentation fusion in D2SD: red/green indicating the segmentation and the correspond-
ing labels.
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(b) HVS-External

Figure 6. Visualization of hepatic vessel segmentation results us-
ing nnU-Net trained on both original and refined labels, in which
the red indicates the segmentation and the green indicates the cor-
responding labels. Improvements are highlighted with yellow ar-
rows.

learnable upsampling, whereas SQ module features are pro-
cessed via cubic spline interpolation upsampling. Each seg-
mentation layer, including the DMQ and SQ modules, pro-
duces an independent pre-softmax output. These outputs
are then merged and refined through a convolutional layer
to generate the final segmentation

D. Refined Hepatic Vessel Labels

In this paper, we use a combined liver vessel segmentation
dataset called the HVS dataset. It is based on three pub-
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Figure 7. Visualization of hepatic vessel segmentation results in
ablation study, with red indicating the segmentation and green rep-
resenting the corresponding labels. Improvements are highlighted
with yellow arrows.

licly available datasets, including LiVS [4], MSD8 [13], and
3DIRCADb [14]. 532, 440, and 20 cases are available for
the three datasets, respectively. The three publicly available
datasets have made an impressive contribution to develop-
ing hepatic vessel segmentation models. However, some
slices of the LiVS dataset are insufficiently labeled, and the
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3D surface Transverse view Sagittal view Coronal view

Figure 8. Visualization of hepatic vessel segmentation results in
the HVS-External, with red indicating the segmentation and green
representing the corresponding labels. Improvements are high-
lighted with yellow arrows.

labels of the test set of MSD8 are unavailable. The men-
tioned situations are reflected by labeled ratios (defined by
the labeled slices divided by the total slice number of a 3D
volume) in Table 1. Thus, to develop our model, we aim to
make the best use of the data and refine these hepatic vessel
labels. Fortunately, our clinical cooperator, after carefully
checking the labels of the MSD8 training set, considered
them to be relatively well labeled. Inspired by this, we first
trained our model based on the training set of MSD8 and
then used it to infer hepatic vessels of the LiVS dataset and
the test set of MSD8. Subsequently, the pseudo labels were
fused with the raw labels. Fused labels were checked again
and manually corrected by a clinician, to serve as the final
hepatic vessel labels in the HVS task. From Table 1, it can
be found that the ratio of labeled slices has been signifi-
cantly improved after our optimization, especially the LiVS
dataset. Moreover, more visualization examples are given in
Figures 3 and 4. Due to the cropping of the CT volume by
the organizers of the dataset, the presence of some lesions,
such as tumors, and the slice thickness, the continuity of the
refined vessel labels is not fully ensured. Still, they are sig-
nificantly improved compared to the original ones. We also

compare the baseline performance trained by the original
labels and the refined ones. As indicated by the evaluation
metrics in Table 2 and the visualization examples in Fig-
ure 6, the baseline trained by the refined labels performs
better in the HVS task.

E. Ablation studies

Some visualization examples in ablation studies are shown
in Figure 7, it can be seen that our D2SD strategy can extract
vessels with diverse sizes more effectively compared to the
baseline. Moreover, liver vessel segmentation can not bene-
fit from the simple concatenation fusion between the images
and corresponding vesselness filtering results. Instead, our
SADF fusion module can better utilize the vesselness filter-
ing result to improve the segmentation accuracy. Besides, it
can be observed that the GSB further preserves a reasonable
continuity of the vessel tree.

F. Analysis on HVS-External

In the HVS-External, we included cases with various liver
diseases, including two cases of fatty liver, four cases of
cirrhosis, twelve cases of liver tumors, and three healthy
livers. We analyze the results of HVS-External based on
the disease stratification, as shown in Table 3. It can be
found that the HarmonySeg achieves the highest mean Dice
for patients with fatty liver, tumors, and healthy individuals,
and mean HDs are competitive compared with other meth-
ods. Furthermore, visualization examples are demonstrated
in Figure 8. The results indicate the robustness of Harmony-
Seg to various liver diseases and the potential to be applied
in clinical practices.

G. Robustness discussion

We recognize that the reconnection loss may introduce
noise. To address this, we observe that the perfor-
mance gains of our loss functions following this order:
Lsup-r(2.94%) > Lmix(2.01%) > Lspatial(1.67%) >
Lcon(1.01%). The first three losses (Lsup-r, Lmix, Lspatial) are
robust and applicable to various scenarios. In contrast, the
reconnection loss Lcon is specifically designed to address
missing vessel segments. To enhance its robustness, we em-
ploy two strategies: (a) We perform skeletonization on the
defined reconnect branches, reducing their pixel width to 1,
as shown in Eq.(6) of manuscript. Consequently, the loss
applied to these pixels remains slight on average. (b) If in-
correct pixels are mistakenly defined for reconnection, they
can be effectively suppressed by the strong regularization
from spatial relationships and mix augmentation invariance.
Thus, we incorporate the reconnection loss as an additional
strategy tailored for vessel segmentation tasks.



Table 4. Ablations on recall and precision trade-off: L+ for
growth, L− for suppression.

L+
r-sup L+

con L−
spatial L−

mix Recall (%) Precision (%) F1-score (%)

- - - - 49.14 84.12 62.04
✓ 55.57 79.12 63.09
✓ ✓ 64.35 71.20 65.01
✓ ✓ 50.33 79.92 59.68
✓ ✓ 53.58 80.15 62.15
✓ ✓ ✓ ✓ 59.93 73.89 66.18

H. Trade-off between precision and recall
We also analyze the recall-precision trade-off. The recall
rates for different loss combinations on HVS are presented
in Table 4. Recall is enhanced through relaxed supervision
(Lr-sup) and branch reconnection (Lcon), while noise is re-
duced via spatial consistency (Lspatial) and mix equivalence
(Lmix). We achieved the best trade-off and the highest F1-
score when combining all loss functions.
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