
LINR-PCGC: Lossless Implicit Neural Representations for Point Cloud

Geometry Compression

Supplementary Material

1. Appendix

1.1. Detail of parameters

The details of the parameters in our experiment are listed in

Tab. 7.

Symbol Description Value

;A0 Initial learning rate 0.01

;A<8= Minimum learning rate 0.0004

W Multiplicative factor of learning

rate decay in StepLR

0.992

step size Period of learning rate decay in

StepLR

32

_ Weight decay (for L2 penalty) fac-

tor in Adam

0.0001

4?>2ℎ 5 Training epoch number for the first

GoP

6-60

4?>2ℎB Training epoch number for subse-

quent GoPs

6-60

) GoP size 32

" Total frame count of an entire test-

ing sequence

96

�<;? Hidden channel dimension of the

MLP

24

�B2>=E Hidden channel dimension of the

SConv

8

��"� Channel dimension of the SEMB 8

Table 7. Detail of parameters of our experiment.

1.2. Supplementary Experiment result

To provide a quantitative analysis on the number of training

epochs for the first GoP �, detailed bpp values under differ-

ent � are given in Tabs. 8 to 10, where the training epoch for

subsequent GoPs is fixed to 1, bpp denotes the average bpp

of all sequences in a dataset, r.t. bpp denotes the relative bpp

(%) of other methods over G-PCC, and w/o over. denotes

the encoding time without overfitting time of our method.

All times are in seconds.

1.3. Supplementary Bitstream and Time Allocation

In Sec. 4.2, we have given the bitstream allocation and the en-

coding/decoding time composition figures of MVUB. Here

we give the figures for 8iVFB and Owlii as Figs. 12 and 14.

Sec. 4.3 has given the training times vs. bpp curves of

8IVFB and MVUB, and here we give the curves of Owlii in

Fig. 14.

F:6 F:11 F:31 F:61

longdress 0.618 0.597 0.576 0.573

loot 0.57 0.549 0.532 0.528

redandblack 0.689 0.665 0.64 0.629

soldier 0.588 0.567 0.553 0.539

bpp 0.616 0.594 0.576 0.567

r.t. bpp 82.925 79.975 77.422 76.311

w/o over. 0.477 0.512 0.446 0.44

enc. time 2.464 3.869 8.005 15.092

dec. time 0.501 0.535 0.471 0.465

Table 8. Quantitative results on 8iVFB dataset of different �.

F:6 F:11 F:31 F:61

basketball 0.452 0.438 0.422 0.414

dancer 0.473 0.457 0.44 0.432

exercise 0.46 0.443 0.428 0.418

model 0.475 0.461 0.445 0.434

bpp 0.465 0.45 0.434 0.425

r.t. bpp 78.759 76.204 73.497 71.949

w/o over. 0.402 0.46 0.389 0.397

enc. time 2.071 3.392 6.972 12.958

dec. time 0.422 0.478 0.41 0.417

Table 9. Quantitative results on Owlii dataset of different �.

F:6 F:11 F:31 F:61

andrew10 0.833 0.801 0.769 0.754

david10 0.778 0.758 0.723 0.708

phil110 0.841 0.812 0.777 0.772

ricardo10 0.802 0.76 0.729 0.709

sarah10 0.777 0.748 0.724 0.704

bpp 0.806 0.776 0.744 0.729

r.t. bpp 87.548 84.25 80.844 79.206

w/o over 0.524 0.57 0.524 0.518

enc. time 2.712 4.385 9.291 16.967

dec. time 0.554 0.599 0.554 0.548

Table 10. Quantitative results on MVUB dataset of different �.

1.4. Supplementary of Ablation Study

Supplementary analysis of initialization strategy. To fur-

ther demonstrate the effectiveness of the initialization strat-

egy, we have sketched Fig. 15. We can observe from the



Figure 11. The impact of regularization terms on MC modules.

Figure 12. Bitstream allocation and encoding/decoding time com-

position in 8iVFB.

Figure 13. Bitstream allocation and encoding/decoding time com-

position in Owlii.

Figure 14. (a) The training time–bpp curves with randomly initial-

izing each GoP (rand.), ini., and fur. ini. in Owlii. (b) Impact of

each module in LINR-PCGC in Owlii.

figure that the bitstream of each GoP has a significant de-

crease. This is because the parameters of the latter GoP

are initialized by the parameters of the previous GoP. Under

the same optimization time, the later the GoP, the better the

encoding efficiency can be achieved.

The effect of Model Compression (MC). To demon-

strate the effectiveness of MC, we presented the original

Figure 15. Bitstream size of each frame. The frame number of

each sequence is 96, and GoP size is 32. Both the first GoP and

subsequent GoPs are trained for 6 epochs.

size of the network parameters (Ori.), the bitstream size of

directly converting quantized integer parameters into a bit-

stream (ToByte), the bitstream size after further compressing

ToByte using LZ77 (LZ77), and the bitstream size generated

by arithmetic coding using a Laplace distribution (Laplace).

As depicted in Tab. 11, arithmetic coding with a Laplacian

prior assumption significantly reduces the bitstream size of

model parameters.

Owlii 8iVFB MVUB Avg

Ori. 1750784 1750784 1750784 1750784

ToByte 437762 437762 437762 437762

LZ77 267790 269554 250825.4 268672

Laplace 248490 251360 240352.9 251360

Table 11. Bitstream sizes (in bits) of the model parameters under

different model compression algorithms.

The effect of the regularization item (Reg.). The regu-

larization term can reduce the absolute value of the network

parameters, thus making the quantized parameters closer to



Figure 16. Comparison of ours method (without pretrain) and

replace our CNP module to 8-stage SOPA with 8 hidden channels.

the Laplace distribution. Therefore, adding a regularization

term is beneficial for MC. The specific situation is shown in

Fig. 11. We choose the method with Reg. and MC as the

baseline. Then, we integrate the overlapping parts of time

and make a ratio to the baseline to obtain Tab. 14. We can

observe from the first and second lines that when there is no

regularization term, the MC module can only save 0.826%

of the bitstream. Next, we can observe from the third and

fourth lines of the table that when there exists a regulariza-

tion term, MC can save 8.17% bitstream. Although we can

conclude from the comparison between the first and third

lines that the presence of regularization terms alone does

not result in significant stream savings (0.092%), its exis-

tence is one of the foundations for the functioning of the MC

module.

The advantages of CNP under the INR architecture.

The simplest idea for upsampling is to directly use SOPA

from SparsePCGC and perform overfitting. However, SOPA

training takes nearly 9 hours and has tens of millions of bits

of parameters3. For online training, this is expensive and

unacceptable. Therefore, we reduce the number of hid-

den channels in the 8-stage SOPA from 32 to 8 and utilize

channel-wise prediction to replace transpose SparseConv.

And we illustrate the comparison result in Fig. 16. Then

we integrate the overlapping parts of time and calculate the

ratio relative to SOPA to obtain Tab. 12. From the table, we

can observe that CNP can save about 7.62% of the bitstream

compared to 8-stage SOPA. To further demonstrate the ad-

vantages of CNP under the INR architecture, we construct

Tab. 13 which shows the comparison between CNP and 8-

stage SOPA. From the table, we can observe that CNP can

save approximately 61.91% of peak memory with the same

number of hidden channels. This also indicates that predic-

tion based on a two-layer octree structure is more memory

efficient than transpose convolution in SOPA.4

3This information comes from the training log provided by the authors.
4We did not compare on MVUB because running 8-stage SOPA with 8

hidden channels on the MVUB dataset would exceed the memory of RTX

3090 in our INR framework.

Owlii 8iVFB avg

8-stage SOPA 1 1 1

ours 0.9238 0.9238 0.9238

Table 12. Comparison of ours method (without pretrain) and re-

place our CNP module to 8-stage SOPA with 8 hidden channels.

Owlii 8iVFB avg

8-stage SOPA 10.64 13.21 11.92

ours 4.00 5.09 4.54

Table 13. Comparison of peak memory usage between ours method

and 8-stage SOPA with 8 hidden channels.

Reg MC Owlii 8iVFB MVUB avg.

× × 1.132 1.089 1.049 1.090

× ✓ 1.142 1.062 1.041 1.081

✓ × 1.132 1.085 1.050 1.089

✓ ✓ 1.000 1.000 1.000 1.000

Table 14. The impact of regularization terms on MC modules.

Figure 17. Bitstream heatmap.

1.5. Bitstream heatmap

Fig. 17 illustrates the absolute difference between the esti-

mated occupancy probability and the actual occupancy val-

ues. A larger difference is equivalent to a higher bitrate

of a point. Points with higher bit rates appear periodically

in the size of 23 cubes as the right part of Fig. 17. This

phenomenon occurs because we use decoded child nodes to

predict non-decoded child nodes. The first batch of child

nodes typically has higher bit rates due to the lack of cur-

rent scale priors, while those predicted based on other child

nodes have lower bit rates.


	Introduction
	Related Works
	Traditional methods
	AI-based methods

	Method
	Pipeline
	Initialization Strategy
	Network
	Point Cloud Downsampling
	Scale Context Extraction
	Child Node Prediction

	Adaptive Quantization
	Model Compression
	Loss Function

	Experiment
	Experiment Configuration
	Experiment Result
	Ablation Study
	Ablation of initialization strategies
	Ablation of modules

	Conclusion

	Acknowledgments
	Appendix
	Detail of parameters
	Supplementary Experiment result
	Supplementary Bitstream and Time Allocation
	Supplementary of Ablation Study
	Bitstream heatmap



