LoftUp: Learning a Coordinate-Based Feature Upsampler for
Vision Foundation Models

Supplementary Material

This supplementary material to the main paper “LoftUp:
earning a Coordinate-Based Feature Upsampler for Vi-
sion Foundation Models” is structured as follows:

* In Appendix A, we explain more implementation details
of LoftUp training and the downstream tasks.

* In Appendix B, we show more quantitative results of
LoftUp with CLIP and RADIO backbones and ablate the
architecture and dataset size choices of training LoftUp.
We also demonstrate additional results on the image mat-
ting task.

* In Appendix C, we provide more visualization of upsam-
pled features, prediction results on various tasks, pseudo-
GT, and cross-attention regions.

A. More Implementation Details

A.l. Training details of LoftUp

Our LoftUp upsampler is a 2-block cross-attention trans-
former that incorporates high-res image inputs with coor-
dinates using an additional convolutional layer and low-res
VEM features as keys and values in the cross-attention lay-
ers. Each transformer block consists of 1 cross-attention
layer and 1 feedforward layer as in ViT [3]. To train LoftUp,
we use a batch size of 8 and AdamW [17] optimizer with a
learning rate of le-3 in Stage 1 and le-4 in Stage 2 for more
stable improvement during self-distillation. In Stage 2, we
take 2 random crops per image to construct crop(I HR), and
update the teacher upsampler’s weights every 10 steps us-
ing the EMA of the student upsampler with a decay fac-
tor of 0.99. In both stages, we use a = 0.8 for mask re-
finement when constructing pseudo-GT to balance sharp
boundaries from masks and the fine-grained details from
high-resolution features within each mask region. For all
upsamplers, including our compared ones, we train for 1
epoch on a IM-image subset of SA1B dataset [13].

A.2. Task setups

Semantic segmentation. Following [7, 8], we perform se-
mantic segmentation on coarse classes in COCO-Stuff [1]
(27 classes) and Cityscapes [2] (19 classes) and report mean
Intersection-over-Union (mloU) for each dataset. We train
a linear decoder layer on upsampled features with a batch
size of 8 and AdamW optimizer [17] with a learning rate of
le-4 for 10 epochs.

Depth and normal estimation. Following [5], we evalu-
ate depth and normal estimation using NAVI dataset [11]

and train a DPT decoder head with 7 convolutional layers
on top of the VFM features. We use a batch size of 8 and
AdamW optimizer [17] with a learning rate of Se-4 for 10
epochs. Following prior works [4-6], we report the root-
mean-squared prediction error (RMSE) for both tasks and
recall at d3 for scale-invariant depth estimation and at 30°
for normal estimation. Here d3 is computed as the number
of pixels whose ratio of depth prediction to groundtruth is
less than 1.25%:
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where dP" is predicted depth and d9* is groundtruth depth.

Video object segmentation. This task involves propa-
gating an object segmentation mask across video frames,
given the ground truth mask for the first frame. Follow-
ing prior evaluation protocols [10, 28], we compute dense
feature affinity maps between frames to track objects. Per-
formance is assessed using three metrics: J Mean, F Mean,
and J & F Mean. Specifically, J] Mean denotes the average
Intersection-over-Union (IoU) between predicted segmen-
tations and groundtruth masks, while F Mean represents the
average F-score, measuring contour accuracy via precision
and recall against groundtruth boundaries.We evaluate our
method on the DAVIS validation set [22], a popular bench-
mark for video object segmentation. The dataset comprises
30 videos of varying lengths, each containing between 1 and
4 objects.

Zero-shot Open-Vocabulary Segmentation. We incorpo-
rate upsampled VFM features into ProxyCLIP [14], a state-
of-the-art method for zero-shot open-vocabulary segmenta-
tion (OVSeg), and evaluate on three popular OVSeg bench-
marks: COCO [15], Cityscapes [2], and ADE20K [31].
ProxyCLIP enhances CLIP features by leveraging spatial
feature correspondence from VFMs as proxy attention, ef-
fectively inheriting the strong local consistency of VFMs
while retaining CLIP’s remarkable zero-shot transferability.
Due to the high computational cost of proxy attention, we
perform upsampling to 8 x for all upsampling methods. We
use CLIP ViT-B/16 [23] as the CLIP backbone, DINOv2-
S/14 [20] as the proxy VFM, and set the input resolution to
336px, matching the resolution of the CLIP backbone.

Interactive Segmentation. We adapt the SimpleClick [16]
architecture to evaluate upsampled features. Specifically,
we use a frozen VFM backbone and train a single-layer



click encoder that directly adds to the image patch embed-
ding, along with a three-layer convolutional decoder head
on top of the upsampled features for interactive segmenta-
tion. For training, we follow prior works [16, 27] and use
the SBD dataset [9] to train for 20 epochs with the nor-
malized focal loss [26, 27]. We employ the Adam opti-
mizer [12] with a learning rate of 5e-5 and a batch size of 8.
For evaluation, following common practice [13, 16, 27], we
sample the first click point as the farthest point from the ob-
ject boundary, and report the mean IoU of the predicted seg-
mentation masks with the groundtruth, denoted as IoU@1
Click. We report results on three popular interactive seg-
mentation benchmarks: GrabCut [25], Berkeley [18], and
DAVIS [21].

B. More Quantitative Results

Resolution Upsampler | COCO  Cityscapes

NA 40.30 30.79

224 Bilinear 47.12 39.84
FeatUp 52.08 33.50

LoftUp 52.58 44.66

NA 42.14 37.36

448 Bilinear 48.32 45.58
FeatUp 52.55 40.00

LoftUp 53.87 50.14

Table B.1. Comparison of feature upsampers when VFM is
CLIP-B/16 [23].

Resolution Upsampler | COCO  Cityscapes

NA 51.00 34.42

224 Bilinear 56.77 43.09
FeatUp 56.59 42.23

LoftUp 58.36 46.98

NA 58.94 49.30

448 Bilinear 62.29 57.42
FeatUp 62.18 56.58

LoftUp 63.55 60.83

Table B.2. Comparison of feature upsampers when VFM is
RADIOV2.5-B [24].

Upsampling CLIP and RADIO. In Tab. B.1 and Tab. B.2,
we compare LoftUp with FeatUp and a bilinear upsampling
baseline using CLIP [23] and RADIO [24] as VFM back-
bones. The upsamplers are trained following the same pro-

Feat PE  Image conv #blocks # Train data ‘ COCO Cityscapes

no 1x1 2 50k 56.46 43.13
learnable 1x1 2 50k 57.89 46.06

@ learnable 3x3 2 50k 58.40 47.35
Sine 1x1 2 50k 58.10 47.24

Sine 3x3 2 50k 58.65 48.63

RoPE 3x3 2 50k 58.56 48.50

Sine 3x3 1 50k 57.94 48.13

(b) Sine 3x3 2 50k 58.65 48.63
Sine 3x3 3 50k 58.35 48.32

Sine 3x3 2 50k 58.65 48.63

(c) Sine 3x3 2 200k 59.40 49.84
Sine 3x3 2 IM 59.87 50.43

Table B.3. Ablation of architecture and training data size
choices. Upsamplers are trained using only Stage 1 loss for con-
venience.

cedure as on the DINOv2 backbone and evaluated at reso-
lutions 224 and 448. As with DINOv2, LoftUp consistently
outperforms all baselines when using CLIP and RADIO as
VEM backbone, demonstrating the general applicability of
our approach across different VFMs.

Ablation on the architecture and training data size.
In Tab. B.3, we conduct an ablation study on both the ar-
chitecture components of LoftUp and the training data size.
For convenience, the upsamplers are trained using only the
Stage 1 training objective. Specifically, in experiment (a),
we demonstrate that employing a sinusoidal positional en-
coding for the low-resolution features—combined with a
3x3 convolutional layer to process the high-resolution co-
ordinates and image inputs—yields improved performance.
This result is in line with prior work showing that sinu-
soidal positional encodings excel in coordinate-based meth-
ods [19, 29, 30] and that stronger image processing layers
help better integrate high-resolution information. In exper-
iment (b), we observe that two blocks of the cross-attention
transformer are sufficient for optimal feature upsampling,
with performance saturating at greater depths. Finally, in
experiment (c), we find that training with a larger dataset
improves performance, although the benefits begin to di-
minish as the dataset size increases. Consequently, we se-
lect a 1M-subset of the SA1B dataset [13] to achieve the
best balance among data diversity, model performance, and
training time.

Additional experiments on image matting. To further val-
idate LoftUp’s task-agnostic design, we evaluated on im-
age matting using a linear probing layer. LoftUp consis-
tently outperforms all baselines, demonstrating its ability
to generalize to semantic-sensitive scenarios - for example,
accurately matting the intricate hair strands of the subject.
See Tab. B.4 and Fig. B.1.



Datasets ‘Bilinear LiFT  FeatUp LoftUp

0.0312  0.0380 0.0217 0.0143
0.1578 0.1586 0.1264  0.1080

Matting Human
COCO Matting

Table B.4. Image matting comparison (MSE)

(a) Img (b) Bilinear (c) LiFT (d) FeatUp  (e) LoftUp

Figure B.1. Qualitative comparison on image matting.

C. More Visualization

We further provide more visualization examples of upsam-
pled features of various methods in Fig. C.1, more predic-
tion examples in semantic segmentation, depth estimation,
and video object segmentation in Fig. C.2 and Fig. C.3,
more examples of different pseduo-GT in Fig. C.4, and
more examples of the attended regions of a high-resolution
pixel in Fig. C.5.
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(a) Original image (b) Low res (c) Bilinear (d) Resize-conv (e) LITF (f) LiFT (g) FeatUp (h) LoftUp(Ours)

Figure C.1. More visualization of features from various upsamplers. Backbone is DINOv2-S/14 [20].



(a) Original image (b) Bilinear (c) LiFT (d) FeatUp (e) LoftUp (f) Groundtruth

Figure C.2. More visualization of predictions examples on semantic segmentation on COCO-Stuff [1] and depth estimation on
NAVI [11].
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(a) Orlgmal image (b) Bilinear (c) LiFT (d) FeatUp (e) LoftUp (f) Groundtruth

Figure C.3. Visualization of prediction examples of video object segmentation on the DAVIS 2017 dataset [22]. Each image displays
its corresponding frame number in the top right corner. The groundtruth segmentation for the O-th frame is provided, and dense feature
affinity maps are employed to propagate its segmentation labels to subsequent frames. We can see that LoftUp outperforms all the other
baselines in accurately tracking the objects across the frames.
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(a) Original image (b) Per-image optimized (c) 2x features (LiFT) (d) Mask-Bicubic (e) Self-Distilled

Figure C.4. More visualization of different pseudo-GT.



Figure C.5. Visualization of attended region (in dots) in the low-res features of a high-res pixel (in cross). The density of dots reflects the
value of the attention map. LoftUp is able to use relevant information across the global feature map for upsampling features at each pixel.
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