Mind the Gap: Preserving and Compensating for the Modality Gap in
CLIP-Based Continual Learning

Supplementary Material

1. Visualization of Modality Gap

As shown in the Fig. 1, we randomly sampled 512 image-
caption pairs from LAION-400M [3], extracted features us-
ing CLIP, and applied UMAP [2] for dimensionality reduc-
tion. The results reveal a clear clustering of features within
the same modality, while features from different modalities
maintain a certain distance. This phenomenon reflects the
modality gap.
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Figure 1. The features of the image and its corresponding caption
visualized using UMAP.

2. Proof of Image-Space Classifier and Modal-
ity Gap Constraints

2.1. Existence of an Optimal Classifier within Image
Feature Space

Let the CLIP image feature matrix be X € R?*™, Con-

sider a classifier W, € R®*C that achieves minimal cross-

entropy loss under ideal conditions. We show that there

always exists an equivalent classifier W, that is entirely

contained within the span of X, i.e., Wy € span(X).
Since any classifier W, can be decomposed as:

where W € span(X) and W L span(X). The input
feature x; € X and its label y contribute to the loss function
composed of softmax and cross-entropy as follows:

n

Ece = - Zlog

C
i Zj eXP(WjTXi)

exp(WJ X;)

2

Obviously, W does not relate to the loss. Thus, an equiv-
alent classifier achieving the same loss can be expressed as:

WX =W/X=W[X (3)

opt

This establishes the existence of an optimal classifier con-
tained within the image feature space.

2.2. Restriction Imposed by Modality Gap on Text
Classifiers

Using Singular Value Decomposition (SVD), we express
W as:
Woy = UEV T, @)

where U € R represents an orthonormal basis for a
subspace of span(X). The text feature matrix T can be de-
composed into:

T = T” + T, (®))

where T = U, A (with rank r < r’) lies within the image
feature subspace, and T, is its orthogonal complement.

Since T | does not contribute to classification, the opti-
mal alignment is obtained by solving:

min U A — W% (6)
The optimal solution is given by:
A*=UW,. 7

Substituting this back, the misalignment error is lower-
bounded by:

o
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where s; are the singular values of W .

This result implies that perfect alignment is achievable
only when the text feature subspace has sufficient rank to
fully capture Wy, i.e., when » = 7’. However, due to the
modality gap, the effective rank of the text classifier sub-
space is often lower (r < r’), leading to an inherent limita-
tion in classification performance.

3. Implementation Details of Image Space and
Classifier Space Analyzing

To analyze these relationships, we first apply SVD to the
image feature matrix and extract its corresponding basis
vectors, denoted as B; € R4*". Given the large number of



CIFAR100 ImageNet100
Avg Last  Avg Last

ours w/o replay 86.79 80.40 87.31 78.38
ours w/ replay  88.48 82.58 88.50 80.74

Table 1. Experimental results with replay data on our method

CIFAR100 ImageNet-R

Method Avg Last  Avg Last
PROOF 89.87 8359 91.25 87.33
CLAP 87.94 84.86 92.12 88.63
SLCA 90.12 84.62 89.99 86.83
RAPF 90.25 8529 9196 88.32
L2P++ 85.68 77.86 90.49 86.73
DualPrompt 86.63 79.12 90.66 87.14
CODA 85.82 78.67 89.11 84.56

Continual-CLIP  80.48 73.46 86.99 83.05
Aper-Adapter  80.21 7195 89.17 854
MOEA4CL 90.98 85.83 9327 90.42

CLAP* 74.41 7157 91.10 87.55
MagMax 90.16 86.06 93.22 89.55
ours 91.78 87.03 93.66 91.08

Table 2. Experimental Results with ViT-L/14 Backbone Model

image features, we retain only the basis vectors that capture
95% of the total energy, reducing noise while preserving
essential information. For the text feature classifier and the
visual space classifier, we employ QR decomposition to ob-
tain their respective basis vectors, denoted as B, and B,,..
Furthermore, we compute the basis vectors of the combined
space spanned by both classifiers, represented as By 4.

4. More experiments

4.1. Compatibility with replay methods.

Our method does not require rehearsal samples; however, it
is still compatible with them. We tested our method with
simple random sampling of rehearsal data, keeping the total
number at 2000. The experimental results, shown in Ta-
ble 1, demonstrate that our method benefits from the replay
data and is compatible with it.

4.2. Experiments of CLIP ViT-L/14 backbone

We evaluate the effectiveness of our method on another
CLIP model. For this, we replace the backbone of all
methods with OpenAT’s stronger ViT-L/14 model. The ex-
perimental results, shown in Table 2, demonstrate that our
method still outperforms the others.

Rank 4 8 16 32
Last 78.02 78.38 7832 78.26

Table 3. Experiments with different ranks of LoRA on ImageNet-
100

8 1 2 4 6 8
Last 77.58 77.92 7838 77.98 77.32

Table 4. Experiments with different 3 on ImageNet-100

o 5% 10% 20% 30%
Last 77.88 7838 77.34 769

Table 5. Experiments with different o on ImageNet-100

4.3. Hyperparameter selection

We use the same hyperparameters for all datasets. Below
are the experiments for hyperparameter selection on a single
dataset.

Rank of LoORA As shown in Table 3, our method is in-
sensitive to the rank of LoRA. We choose a rank of 8 for
experiments across all datasets.

Output the ensemble weights 3 As shown in Table 4, as
we increase the weight 3 assigned to the visual-space clas-
sifier’s output, the overall performance first improves and
then declines. This suggests that higher-confidence predic-
tions from the visual-space classifier effectively compen-
sate for the shortcomings of the text classifier, while lower-
confidence predictions have minimal impact on the overall
results. However, when 3 becomes too large, even low-
confidence predictions from the visual classifier can signif-
icantly influence the text classifier’s output, allowing incor-
rect predictions with low scores to dominate. Therefore, an
appropriately chosen weight enables better complementar-
ity between the two classifiers.

Effect of @ As shown in the Tab. 5, when « is too small,
it excessively constrains model training, preventing it from
fully learning the new task and limiting performance. Con-
versely, when « is too large, the pre-trained knowledge is
disrupted, leading to a gradual performance decline. We
select 10% as our a.

4.4. Zero-shot Capability

As shown in Tab. 6, we run zero-shot tests on four
ImageNet-C [1] corruptions (severity 3) after continual



Defocus Contrast Frost Gaussian
CLIP 41.95 55.07 38.23 43.20
MagMax 43.51 52.10 36.75 41.43
MOE4CL 44.24 54.82 34.75 36.09
Ours 44.65 56.02 37.71 42.47
Table 6. Zero-shot performance on ImageNet-C after class-

incremental learning on CIFAR-100.

100-shot  50-shot 25-shot 5-shot

MagMax 75.82 75.02 72.53  67.66
MOEA4CL 75.52 75.40 7498  68.54
Ours 78.30 78.04 77.04  75.10

Table 7. Last accuracy on CIFAR-100 (10-task) in few-shot set-
tings, showing consistent gains of our method under limited data.

CIFAR-100 ImageNet-R
Stask  20task Stask  20task

MagMax 82.07 76.84 82775 80.18
MOEA4CL 78.96 7620 81.37 79.58
LGVLM[4] 83.84 7726 8246 79.32
Ours 81.47 7931 83.13 82.12

Table 8. Last accuracy under different task settings on CIFAR-100
and ImageNet-R.

learning from CIFAR-100. Defocus blur: Due to CIFAR-
100’s low resolution, all methods slightly improved over
the original CLIP; our method performed best. Other cor-
ruptions: Other methods showed reduced robustness, while
ours maintained CLIP performance with minimal drop and
slight gains on Contrast. This suggests our approach main-
tains CLIP’s generalization better than other methods.

4.5. Few-shot Capability

As shown in Tab. 7, we report last accuracy in continual
learning on CIFAR-100 10 task under limited data settings.
Our method shows greater advantage under limited data
conditions.

4.6. Additional task settings

We further evaluate our method under different task set-
tings. As shown in Tab. 8, while our performance on
CIFAR-100 (5-task) is lower than the best baseline, our
method achieves the highest accuracy under the more chal-
lenging 20-task setting.

Ours +EMA + Epoch Est.

Avg 87.58 87.73 87.77
Last 82.67 82.92 82.82

Table 9. Study of auxiliary strategies on ImageNet-R (10-task).

4.7. Study on Auxiliary Strategies

To explore potential performance enhancements, we test
two auxiliary strategies: (1) Exponential Moving Average
(EMA) and (2) Per-task Epoch Estimation. As shown in
Tab. 9, both bring minor improvements but will increase
computational cost. In particular, per-task epoch estimation
doubles the number of forward passes. To maintain effi-
ciency, we adopt our method without these additions.

5. Algorithm Pseudocode

The overall pipeline of training is shown in the pseudocode:

Algorithm 1 Training algorithm

1: Input: D = {X;,X,,..
tasks

., X} > Training data in all

2: Input: £ (-) > Original CLIP
3: require: chh.p(~) > CLIP after fine-tuning on 7" tasks
4: require: W, > cosine classifier in visual space
5: Initialize: e = 0 > fine-tuning period
6: fort =1to T do

7: fctl’ig(-) = cﬂ;’l () > init model in current task
8: if ¢ = 1 then > calculate the fine-tuning period
9 neg” = Eq.2(fu5, (1), X1)

10: faip (-) = FINETUNE(f3)(-), X1)

11: neg! = Eq.Z(fclh’;(~),X1)

12: while Eq.3(neg®, negtt!) < a do

13: e+ =1

14: fas 1) = FINETUNE(f5(-), X1)

15: neg®tt = Eq.Z(fClli’;Jrl7 Xy)

e = mazx(l,e)

16: else

17: fori=1toedo _

15 J5() = FINETUNE(557 (). X,)

19: aip(t) = ff{ifg(')

20:  Initialize: W! > initalize W based on class

prototypes

21 Wi =TRAINW!, fi. (X))

clip
. T T
22: return fg; (1), W,
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