
A More Implementation Details
More Training Details. We use a batch size of 12, with
each batch containing one training scene consisting of input
views and target views. As training progresses, the frame
distance between input views gradually increases. The ini-
tial learning rate is set to 1 ⇥ 10�5 for the backbone and
1⇥ 10�4 for other parameters.
More Details of Pose Head. The pose head structure is
shown in Fig. 6. During training, the linear layer for rotation
is initialized with zero weights, and the 6D bias is set to
(1, 0, 0, 0, 1, 0) to approximate the identity matrix, ensuring
that the initial pose for each view has a shared field of view
for stable convergence. Camera normalization sets the pose
of the first view to the identity matrix.
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Figure 6. The structure of the proposed pose head.

More Details of Splatt3R Results. In Tab. 1 and Tab. 2 of
the main paper, we retrain Splatt3R since its original imple-
mentation does not provide results on RE10K and ACID.
We remove the loss mask, as it depends on ground-truth
depth, which is unavailable for RE10K. Additionally, the
original implementation employs an offset head to adjust
the 3D points predicted by the frozen MASt3R. However,
we find that this approach inefficient for aligning with the
scale of ground-truth intrinsics. Instead, we directly fine-
tune the 3D point head while keeping the backbone frozen.
Training is conducted using ground-truth poses.
More Details of Baselines in Pose Estimation. In Tab.3,
all experiments are conducted using 256⇥256 input images.
For SuperPoint + SuperGlue, feature matches are used to es-
timate Essential Matrices and compute relative poses. For
DUSt3R and MASt3R, we estimate camera intrinsics from
the 3D points of the first view and compute relative poses
using the PnP algorithm [15]. Since SelfSplat defines the
target image as the reference frame, we evaluate relative
poses from the target to the context image, a relatively eas-
ier task than predicting relative poses between two context
views. NoPoSplat estimates poses in two stages: it first ini-
tializes the relative pose between input views using PnP [15]
with RANSAC [13], leveraging predicted Gaussian centers.
Then, with the Gaussian parameters fixed, it refines the pose
by minimizing photometric losses combined with an SSIM
loss. This second-stage optimization integrates 3D Gaus-
sian splatting into the loop, making it computationally ex-
pensive and less suitable for real-time applications. For a
fair comparison with other splatting-based methods, we re-
port NoPoSplat’s accuracy based on the first-stage initial-

ization only.
More Details of Ablation on Ground-truth Poses. To
evaluate our method’s ability to reconstruct geometry with-
out pose supervision, as shown in Tab. 5, we incorporate
camera poses to supervise our pose head. Our pose loss is
a combination of geodesic loss [34] for rotation and L2 dis-
tance loss for translation. Specifically, they are defined in
Eq. 6 and Eq. 7. We set the weight for rotation loss to 0.1,
the weight for translation loss to 0.01.

Lrot = arccos
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T

R)� 1
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!
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Ltrans(T̂ ,T ) = kT̂ � T k22 (7)

B More Experimental Analysis
Evaluation on In-the-Wild Data. We evaluate our model
on mobile phone photos using the version trained without
intrinsic embeddings (as in the ablation study). Given two
input images, we estimate the focal length from the out-
put Gaussian centers of the canonical view (the first image).
This focal length is used to render novel views. The 3D
geometry and rendered results in Fig. 7 demonstrate our
model’s strong out-of-domain generalization, even under
large viewpoint changes.

Input RGB / Depth3D Gaussians

Figure 7. 3D Gaussians and rendered RGB and depth results on
mobile phone photos.
Evaluation on the Evaluation Set of pixelSplat. We adopt
the evaluation set from NoPoSplat [49] in our main paper,
as it presents a greater challenge due to minimal overlap be-
tween most input pairs. Additionally, we report results us-
ing the evaluation sets from pixelSplat [4] and MVSplat [8],
as shown in Tab. 8.These results also demonstrates that our
method consistently outperforms other SOTA methods.
Comparison on PnP Pose and Pose Head. Our method
supports two strategies for pose estimation: direct regres-
sion via the pose head, and estimation via PnP [15] with
RANSAC [13], using the predicted 3D Gaussian centers.
As shown in Tab. 9, both approaches achieve comparable
results in both in-domain and out-of-domain settings, indi-
cating strong alignment between the estimated poses and
the predicted Gaussian centers.
Comparison with MASt3R. As our method is initial-
ized from MASt3R weights, to compare with the original



Method RE10K ACID

PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

pixelSplat 26.090 0.863 0.136 28.270 0.843 0.146
MVSplat 26.387 0.869 0.128 28.254 0.843 0.144
NopoSplat⇤ 26.820 0.880 0.125 27.952 0.837 0.150
Ours 27.311 0.888 0.119 28.407 0.845 0.142
Ours⇤ 27.696 0.892 0.117 29.000 0.862 0.136

Table 8. Novel view synthesis performance comparison on the
evaluation sets of pixelSplat and MVSplat.

Task Method Rotation Translation

5� " 10� " 20� " 5� " 10� " 20�

RE10K ! RE10K PnP 0.793 0.875 0.926 0.661 0.789 0.872
Pose Head 0.816 0.886 0.932 0.666 0.793 0.874

RE10K ! ACID PnP 0.614 0.739 0.830 0.384 0.545 0.683
Pose Head 0.645 0.754 0.838 0.402 0.555 0.689

Table 9. Comparison between PnP poses estimated from Gaussian
centers and poses predicted by the pose head.

Input MASt3R RGB / Depth SPFSplat (Ours) RGB / Depth

Figure 8. Comparison of 3D Gaussian and rendered results be-
tween MASt3R and our method.

Method PSNR" SSIM" LPIPS#

MASt3R 17.617 0.539 0.403
SPFSplat (Ours) 25.484 0.847 0.153

Table 10. Novel view synthesis performance comparison between
MASt3R and our SPFSplat on RE10K.

MASt3R, we adapt MASt3R for novel view synthesis by
freezing its weights, setting its output 3D points as Gaussian
centers, and adding a DPT head to predict other Gaussian
parameters (as in our approach). To address scale inconsis-
tency, we estimate the focal length from the 3D points and
use it for training instead of the ground-truth focal length.
The model is trained with ground-truth poses. As shown in
Tab. 10 and Fig. 8, although our model is initialized from
MASt3R and trained without pose supervision, it signifi-
cantly outperforms MASt3R, achieving more accurate geo-
metric structures and visual details.

Initialization PSNR" SSIM" LPIPS#

Random 21.200 0.690 0.250
DUSt3R 25.280 0.841 0.156
MASt3R 25.484 0.847 0.153

Table 11. Comparison of different initialization strategies

Initialization. In our main paper, we initialize the back-
bone with MASt3R weights. Here, we further analyze the
influence of different backbone initialization strategies. As
shown in Tab. 11, MASt3R’s pretrained weights achieve
slightly better NVS performance compared to DUSt3R.
This improvement can be attributed to MASt3R’s training
on feature-matching tasks, which produces stronger local
feature representations that improve both pose estimation
accuracy and the quality of reconstructed 3D Gaussians.
For random initialization, we adopt a warm-up phase by in-
corporating a point cloud distillation loss from the DUSt3R
model during the first 10,000 steps. This additional supervi-
sion is crucial, as training with only photometric loss, espe-
cially without ground-truth geometric supervision, makes it
difficult for the network to learn to predict Gaussians in the
canonical space. Since our model is trained without ground-
truth poses, proper initialization significantly improves pose
estimation quality. Although random initialization results
in a noticeable performance drop, the results still demon-
strate the model’s capability to reconstruct Gaussians with-
out known poses.

Method NVS Pose

PSNR" SSIM" LPIPS# 5� " 10� " 20� "

(a) Ours 25.484 0.847 0.153 0.617 0.755 0.845
(b) w/o intrin. emb. 24.864 0.829 0.161 0.562 0.717 0.823
(c) w/o reproj. loss 19.836 0.644 0.289 0.028 0.102 0.263
(d) w/ gt pose loss 25.239 0.842 0.157 0.691 0.810 0.885
(e) w/o L2 loss 24.310 0.837 0.150 0.602 0.740 0.833
(f) w/o LPIPS loss 25.336 0.832 0.210 0.559 0.709 0.812

Table 12. Component ablations on RE10K. NVS are evaluated
using predicted pose.

Figure 9. Ablation on the intrinsics embedding and reprojection
loss. Some failure regions are highlighted by red rectangles.

More Ablation Results. We demonstrate the ablation re-
sults on RE10K evaluated using predicted poses in Tab. 12.
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Figure 10. Qualitative comparison on different numbers of input views.

It indicates that the intrinsics embedding and reprojection
loss both contribute to better alignment between the poses
and Gaussians. We also incorporate the ablation of L2 and
LPIPS in (e) and (f), which demonstrates that both L2 and
LPIPS losses positively impact NVS and pose estimation.
Fig. 9 presents the rendered results of our method without
intrinsics embedding or reprojection loss. Removing intrin-
sics embedding leads to slightly blurrier outputs due to scale
ambiguity. The absence of reprojection loss, however, re-
sults in severe blurring and rendering artifacts, as the lack
of geometric constraints hinders proper alignment between
poses and 3D points, causing reconstruction errors.

Extension to Multiple Views. Our method can be extended
to multi-view input. For a fair comparison, we fix the first
and last views across all experiments while gradually in-
creasing the number of intermediate views. As shown in
Fig. 10, more input views progressively enhance scene com-
pleteness and visual details, leading to improved rendering
quality.

Failure Cases. Fig. 11 shows that our method may pro-
duce blurred outputs or artifacts in occluded or texture-less
regions, or under extreme viewpoint changes. These issues
may require generative abilities or explicit 3D supervision.

Ref. Ours GT Ref. Ours GT

Figure 11. Some bad cases of our SPFSplat.

C More Visualizations
We show more qualitative comparisons with baselines in
Fig. 12 to Fig. 15. Our method achieves stable and supe-
rior performance across different levels of image overlap
and diverse datasets..

D Limitations
Our method can be trained without ground-truth poses and
easily scales to large datasets, therefore, future work could
explore training on larger, more diverse datasets to improve
pose estimation and generalization ability. Moreover, since
our approach is not generative, it cannot reconstruct unseen
areas with detailed textures. Generative models could be
leveraged to mitigate this limitation.
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Figure 12. More qualitative comparisons on RE10K with small image overlap.



Ref. pixelSplat MVSplat NoPoSplat PF3plat SelfSplat SPFSplat (Ours) GT

Figure 13. More qualitative comparisons on RE10K with medium image overlap.



Ref. pixelSplat MVSplat NoPoSplat PF3plat SelfSplat SPFSplat (Ours) GT

Figure 14. More qualitative comparisons on RE10K with large image overlap.
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Figure 15. More qualitative comparisons on ACID.
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