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1. Mask of FCMI
We also conducted an analysis on different masking strate-
gies. As shown in Figure 1, applying the same mask to
paired multimodal samples helps improve model perfor-
mance. This approach facilitates more precise and detailed
alignment between modalities, ensuring semantic consis-
tency in the unmasked regions while applying the mask to
the same positions across modalities. In contrast, using dif-
ferent masking positions for each modality in paired sam-
ples leads to a decline in performance, as it disrupts the se-
mantic alignment across the modalities.
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Figure 1. Experimental results of different Mask.

2. Codebook Size
The size of the representation space also affects the model’s
performance. As shown in Figure 2, we experimented
with five different settings: 256, 400, 512, 800, and 1024.
Among these, 400 led by a significant margin over the other
settings. Therefore, we chose a codebook size of 400 as the
final setting for our model.
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Figure 2. Experimental results of different Codebook Size.

3. Ablation on CMG
The experimental results of Table 1 and Table ?? are similar.
Lcoarse serves as the foundation of the model, while Lfine

and Lcujp further refine the unified representation space and
enhance the model’s open-domain detection capabilities.

Lfine Lcoarse Lcujp
AVE

V→A A→V
AVVP

V→A A→V
AVE→AVVP
V→A A→V

UCF(v)↔VGG(a)
V→A A→V

✓ - - 7.1 5.2 13.4 13.7 15.9 7.4 10.5 8.2
- ✓ - 54.3 55.2 39.6 37.8 50.5 46.3 70.3 61.7
- - ✓ 5.6 5.1 0 6.0 0 0 13.0 9.7
✓ ✓ - 56.1 57.0 38.9 35.8 52.2 43.3 70.8 64.6
✓ - ✓ 6.4 4.8 13.4 13.7 15.9 7.4 11.1 8.2
- ✓ ✓ 53.8 52.4 43.8 45.9 56.7 54.9 67.4 62.3
✓ ✓ ✓ 56.1 57.1 45.2 48.2 56.3 54.9 75.3 64.5

Table 1. Ablation study of the three losses proposed by our model
on CMG.

4. Computational Efficiency
As shown in Table 2, compared to CMCM [3] and
DCID [4], our method requires more GPU memory and
longer per-epoch training time, but achieves better perfor-
mance, reflecting a trade-off between performance and re-
sources. CUJP8, despite having more split block reorder-
ing, optimizes memory usage and reduces training time
compared to MMJP6 [2]. Increasing the number of splits
(CUJP4 vs. CUJP8) leads to higher memory usage but
better performance in multimodal alignment. CMCM re-
quires more epochs due to warm-start techniques. Inference
time differences across all models are minimal and task-
dependent. For reproducibility, the complete source code is
provided in the supplementary materials.

Method GPU Memory Usage Time per Epoch Total Epochs OSCMG Avg. CMG Avg.
CMCM 6.25GB 1.41h 8 44.47 44.78
DCID 7.90GB 1.72h 5 50.19 52.93
MICU (MMJP6) 14.77GB 2.30h 5 52.00 52.46
MICU (CUJP4) 9.07GB 2.13h 5 52.56 53.75
MICU (CUJP8) 13.30GB 2.22h 5 54.29 57.20

Table 2. Comparison of computational efficiency with the original
backbone (batch size: 80, GPU: RTX 3090).

5. Unified Representation Space Visualization
As shown in Figure 3, the two subfigures illustrate the rep-
resentation spaces of DCID [4] after pre-training and our
proposed model. The visualization maps audio-video-text
triplets from the Valor32K dataset [1] into the unified rep-
resentation space (codebook). Codewords quantized by all
three modalities with a proportion of ≥10% are marked in
purple, those shared by any two modalities with ≥10% ap-
pear in orange, while those dominated by a single modality
are shown in cyan. The bottom left of the figure indicates
the proportion of each color.

A higher proportion of cyan suggests an imbalanced
multimodal distribution, indicating larger modality discrep-
ancies, whereas more purple signifies stronger cross-modal
alignment, aligning with the goal of a unified representa-
tion. As observed, our model achieves significantly better
multimodal integration compared to DCID.



(a) DCID Representation Space Visualization (b) MICU Representation Space Visualization

Figure 3. Purple (avt) indicates where all three modalities have quantized activations ≥10%, orange (av/vt/at) for two modalities, and cyan
(a/v/t) for a single modality.
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