Reverse Convolution and Its Applications to Image Restoration

Supplementary Material

In this supplementary material, we provide additional
details and analyses of our proposed reverse convolution
operator and block. First, we explore its integration with
the widely used UNet architecture in Section A. To further
demonstrate the effectiveness of the proposed operator, we
apply it to the classical deblurring task in Section B. Ad-
ditionally, to highlight the unique characteristics of the re-
verse convolution operator in comparison to other methods,
we conduct experiments on a single-layer network utilizing
the operator in Section C. And to better explain the details
of our proposed operator, we present a detailed description
of the datasets and training process in Section E and de-
rive Eq. (2) in Section F. Moreover, to further evaluate the
effectiveness and flexibility of our operator, we integrate
it into several advanced architectures, including ResNet,
DenseNet, and FCN, to test its performance on high-level
vision tasks, as discussed in Section G. Finally, we analyze
some visual details, including the kernel activation patterns
and )\ features, in Section H.

A. Denoising with UNet architecture

It is well-known that UNet [12] is effective for image-to-
image translation tasks such as image denoising. In this
experiment, we replace the basic convolution operations of
plain UNet with our proposed converse block, which we
refer to as Converse-UNet (see Figure 1). The total num-
ber of converse block is set to 20. We compare two vari-
ants with depthwise convolution and depthwise transposed
convolution, which we refer to as Conv-UNet and ConvT-
UNet, respectively. The number of parameters and average
PSNR(dB) results of different variants of UNet for Gaussian
denoising with noise level 25 on Set12 and BSD68 datasets
are provided in Table 1. It can be seen that our Converse-
UNet achieves better results than Conv-UNet and ConvT-
UNet while having the same number of parameters. The
possible reason is that our reverse convolution operator can
encourage each channel to capture more spatial informa-
tion. Figure 2 shows visual comparisons between different
methods, it can be seen that our Converse-UNet can produce
visually pleasant results without introducing artifacts.

B. Application to deblurring task

Apart from the deblurring experiments showcasing the
property of the proposed operator in USRNet, we also con-
duct experiments with Converse-DnCNN to demonstrate its
effectiveness as a basic component. In this experiment,
blurred images are generated by convolving the clean im-
ages with a 7 x 7 isotropic Gaussian blur kernel with stan-
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Figure 1. The architecture of the Converse-UNet.

Table 1. The number of parameters and average PSNR(dB) results
of different variants of UNet for Gaussian denoising with noise
level 25 on Set12 and BSD68 datasets.

Dataset
Models # Parameters —————————
Setl2 BSD68
Conv-UNet 734,913 30.62 29.08
ConvT-UNet 734,913 30.62 29.13

Converse-UNet 734,913 30.70 29.37

dard deviation 1.6, followed by adding Gaussian noise with
a noise level of 2.25. Table 2 reports the average PSNR
results of different methods, including DnCNN [14], Conv-
DnCNN, ConvT-DnCNN, and Converse-DnCNN, on differ-
ent datasets. It can be seen that our proposed Converse-
DnCNN achieves the best PSNR results. Figure 3 shows
the visual comparisons between different methods an ex-
ample image from Setl4. It can be seen that our method
can produce visually pleasant results with sharp edges.

Table 2. The average PSNR(dB) results of different methods for
image debluring task.

Dataset
Models
Set5 Setl4 BSD68
DnCNN [14] 33.09 29.88 29.52
Conv-DnCNN 33.19 29.99 29.57
ConvT-DnCNN 33.08 29091 29.54

Converse-DnCNN 33.23  30.01 29.61
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Figure 2. Denoising results of different methods on an example image from BSD68 with noise level 25.
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Figure 3. Deblurring results of different methods on the image ‘zebra’ from Set14.

C. Analysis with a single-layer network

The most straightforward way to demonstrate the effec-
tiveness of the proposed reverse convolution operator is to
compare it with the depthwise convolution and depthwise
transposed convolution on a single-layer network. To il-
lustrate this, we consider two image restoration tasks: de-
blurring and super-resolution. In this experiment, blurred
images are created by convolving clean images witha 7 x 7
isotropic Gaussian blur kernel having a standard deviation
of 1.6. The low-resolution images are modeled as blurred,
downsampled, and noise-free versions of the corresponding
high-resolution images. The blurring process remains con-
sistent with the previously described blurring method. The
downscaling factor is set to 3. Table 3 provides the average
PSNR(dB) results of a single-layer network with different
operators for deblurring and super-resolution. We can see
that our operator outperforms both depthwise convolution
and depthwise transposed convolution for both the deblur-
ring and super-resolution tasks. The reason is that our re-
verse convolution operator actually models the degradation
processes of the deblurring task and super-resolution task.

D. Analysis of computational complexity

The computational complexity of our operator is primarily
governed by the FFT and inverse FFT operations, both scal-
ing as O(HW log, HW), in contrast to the O(HW K?)
complexity of standard convolution. While standard con-
volution remains more efficient for small kernel sizes K,

Table 3. The average PSNR(dB) results of a single-layer network
with different operators for deblurring and super-resolution on set5
dataset.

Tasks
Models - :
Deblurring  Super-Resolution
Transposed 26.90 25.50
Convolution 27.11 25.52
Reverse Convolution 27.38 26.12

our operator demonstrates greater computational efficiency
as K increases (see [11] for a detailed discussion on FFT-
based acceleration). It is worth noting, however, that stan-
dard convolution benefits from highly optimized GPU im-
plementations, whereas our operator currently lacks such
low-level optimization, which partially accounts for the ob-
served runtime gap.

E. Datasets and training details

We use widely recognized datasets for image restoration
in our experiments. For denoising, we validate our op-
erator on the Setl2 [15] and BSD68 (contains 68 im-
ages from The Berkeley Segmentation Dataset and Bench-
mark) [10] datasets. For super-resolution, we use the
BSD100 (contains 100 images from The Berkeley Seg-
mentation Dataset and Benchmark) [10], Urban100 [6],
Set5 [1], and Setl4 [13] datasets. For deblurring, we We
follow the training setup from [16] by optimizing network



parameters with L1 loss and the Adam optimizer. The learn-
ing rate starts at le-4, halves every 100,000 iterations, and
stops when below 5Se-7.

F. Derivation of equation (2)

Our target optimization problem is as follows:

X" = argming [|Y — (X ® K) L] + A IX = Xo| 7,
(1)

The closed-form solution to Eq. (1) is given below:

We now present a detailed derivation of Eq. (2).

1 _
X* — F‘l(/\(L—FK o

Assumption 1 The cyclic convolution operator can be
represented by a blurring matrix H. It is satisfied pro-
vided the underlying blurring kernel is shift-invariant and
the boundary conditions make the convolution operator pe-
riodic. Using the cyclic convolution assumption, the blur-
ring matrix and its conjugate transpose can be decomposed
as

H=F'AF 3)
H” = F 'AfF 4)

where the matrices F and F~! are associated with the
Fourier and inverse Fourier transforms (satisfying FF~! =
F~IF =1Iy,) and A = diag{F} € CN»*Nn js a diago-
nal matrix, whose diagonal elements are the Fourier coeffi-
cients of the first column of the blurring matrix H, denoted
as K. Using the decompositions (3) and (4), the blurring
operator Hx and its conjugate H x can be efficiently com-
puted in the frequency domain.

Assumption 2 The down-sampling operator can be repre-
sented by a decimation matrix S € RNXNe while its con-
jugate transpose ST € RN» >Nt interpolates the decimated
image with zeros. The decimation matrix satisfies the rela-
tionship SS¥ = I,. Denoting S = S¥S, multiplying an
image by S can be achieved by making an entry-wise multi-
plication with an N}, X N}, mask having ones at the sampled
positions and zeros elsewhere.
Eq. (1) transforms to

X* = argming||Y — SHx|% + \|X — X2 (5)
whose solution is given by
X* = (HISH + 2)\) "' HSTY +20X,)  (6)

with S = SHS.

Lemma 1l The following equality holds

1
FSF~! = ng ® Iy, (7N

where J; € R?%9 is a matrix of ones, Iy, € RV1*M is the
N; x Nj identity matrix and ® is the Kronecker product.

Using the property of the matrix FSF# given in Lemma
1 and taking into account the assumptions mentioned above,
the analytical solution (6) can be rewritten as

-1
X*=F"! (;AHA + 2)\> F (H”S"Y +2)X,)
@®)

where the matrix A € CM*Nn is defined as
A=[A Ay, Ay )

and where the blocks A; € CV XNt (j = 1,--- , d) satisfy
the relationship

diag{A1,--- ,Aq} = A. (10)

Lemma 2 (Woodbury formula) The following equality
holds conditional on the existence of A7 and A3!

(Ap + AsAzA,)!

_ _ _ _ _ _, an
= AT - ATTA (A FALATTAY) TTALAY

where A1, Ay, A3 and A4 are matrices of correct sizes.

When Assumption 1 and 2 are satisfied, the solution of
Problem (5) can be computed using the following closed-
form expression

o 1 I o iam g\ !
(12)

where r = H7S7Y + 2)\X, and A is defined in (9).

We denote the FFT of r as L, where L =
F, = A"FSPY 4 2\Fx, = FgFy;, + \Fx,.
Additionally, given that A = [A;,Aq,...,Ay] =
[Fri,Fko,...,Fr4], we deduce that AA” = FFy.

Note that Iy, € RNxNi s the N; x N identity ma-
trix. Thus, the down-sampling operation is characterized by
SIy,, which represents a mask matrix that corresponds to
the sampled positions.

Now, we simplify Eq. (12) as follows:
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G. More architecture and networks

Considering that our operator performs comparably to
convolution and transposed convolution in several image
restoration tasks, we aim to further evaluate its capabilities
as a fundamental component across a wide range of tasks.
Specifically, we focus on two prominent computer vision
tasks in high-level vision: classification and segmentation.
These tasks require the operator to capture not only pixel-
level details but also semantic information. To assess this,
we integrate our Converse2D operator into the most well-
known architectures, including ResNet [4], DenseNet [5],
and FCN [9], replacing the standard convolution layers. Our
results demonstrate that the Converse2D operator also per-
forms effectively as a modular component in high-level vi-
sion tasks.

G.1. Classification with ResNet architecture

ResNet [4] introduces residual connections to facilitate the
training of very deep networks, improving accuracy and
convergence by mitigating the vanishing gradient problem.
In this experiment, we replace the standard convolution op-
erations in ResNet [4] with our proposed Converse2D oper-
ator, resulting in a variant we call Converse-ResNet. We
compare it with other two versions: one with depthwise
convolution (Conv-ResNet), one with depthwise transposed
convolution (ConvT-ResNet). For this experiment, we use
a ResNet architecture with 56 layers. Notably, our ResNet
variants have significantly fewer parameters due to the use
of depthwise convolutions. It can maintain comparable per-
formance by utilizing more channels, thereby keeping the
number of parameters roughly the same. The average accu-
racies on CIFAR-10 and CIFAR-100 datasets are shown in
Table 4. It can be observed that our operator achieves per-
formance comparable to the other two, demonstrating its
ability to effectively capture semantic information.

Table 4. The average accuracies of different variants of ResNet for
classification on CIFAR-10 and CIFAR-100 datasets.

Dataset
Models
CIFAR-10 [7] CIFAR-100 [7]
Conv-ResNet 82.62 63.01
ConvT-ResNet 81.65 63.14
Converse-ResNet 83.89 63.12

G.2. Classification with DenseNet architecture

The key innovation of DenseNet [5] is dense connectivity
pattern, where each layer directly receives inputs from all
preceding layers. In this experiment, we replace the stan-
dard convolution operations in each DenseLayer with our
proposed Converse2D operator, referring to the modified
network as Converse-DenseNet. We compare two variants
incorporating depthwise convolution and depthwise trans-
posed convolution, which we refer to as Conv-DenseNet
and ConvT-DenseNet, respectively. The average accuracies
on CIFAR-10 and CIFAR-100 datasets are shown in Ta-
ble 5. The results demonstrate the effectiveness of our pro-
posed operator. We believe that dense connectivity may fur-
ther benefit from our operator, as it can capture more single-
channel information and aggregate it through the 1 x 1 con-
volution.

Table 5. The average accuracies of different variants of DenseNet
for classification on CIFAR-10 and CIFAR-100 datasets.

Dataset
Models
CIFAR-10 [7] CIFAR-100 [7]
Conv-DenseNet 91.08 75.38
ConvT-DenseNet 91.12 75.22
Converse-DenseNet 91.16 75.43

G.3. Segmentation with FCN architecture

FCN [9] replaces the fully connected layers in traditional
CNNs with convolutional layers and employs upsampling
to restore the image size lost due to convolution and pool-
ing. In this experiment, we substitute the bilinear interpo-
lation in FCN-8s with our proposed operator to achieve the
upsampling process, which we refer to as Converse-FCN-
8s. In terms of the convolution variant (Conv-FCN-8s), we
use 3 x 3 depthwise convolutions and nearest-neighbor in-
terpolation to perform the upsampling operation. The trans-
posed convolution variant (ConvT-FCN-8s) performs up-
sampling via depthwise transposed convolutions, replacing
the bilinear interpolation. We choose the widely used PAS-
CAL VOC [3] and CamVid [2] datasets to train and test the
model. The average pixel accuracies are presented in Ta-



ble 6. The results are promising, as image segmentation
requires capturing both pixel-level and image-level infor-
mation. This demonstrates that our operator can serve as a
fundamental component across a wide range of tasks.

Table 6. The average pixel accuracies of different variants of FCN-
8s for Segmentation on PASCAL VOC and CamVid datasets.

Dataset
Models
PASCAL VOC [3] CamVid [2]
Conv-FCN-8s 84.6 87.5
ConvT-FCN-8s 84.5 87.3
Converse-FCN-8s 84.8 87.7

G.4. Depth estimation with BTS architecture

The key component of BTS [8] is the use of local pla-
nar guidance layers combined with a backbone encoder-
decoder architecture, enabling precise depth estimation
from a single RGB image. In this experiment, we adopt
BTS as our baseline model and replace its standard con-
volution operations with our proposed Converse2D opera-
tor, resulting in a modified version referred to as Converse-
BTS. We evaluate two variants using depthwise convolution
and depthwise transposed convolution in the decoder stages,
named Conv-BTS and ConvT-BTS, respectively. The eval-
uation is conducted on the NYU Depth v2 dataset, and the
quantitative results are summarized in Table 7. Our results
indicate that the proposed operator outperforms both the
depthwise convolution and depthwise transposed convolu-
tion variants. We attribute these improvements to the en-
hanced capacity of Converse2D to preserve spatial structure
and promote better single-channel feature learning, which
is crucial in dense prediction tasks such as monocular depth
estimation.

higher is better lower is better

Models
6 < 1.25 AbsRel RMSE SqRel
Conv-BTS 0.880 0.109 0.391 0.063
ConvT-BTS 0.879 0.111 0.390 0.061
Converse-BTS 0.887 0.105 0.385 0.059

Table 7. Evaluation results of different BTS variants for depth estimation
on the NYU Depth v2 dataset.

H. More Visualization

We visualize the kernel patterns by plotting the learned ker-
nels in the 10-th Converse2D module of Converse-DnCNN,
as shown in Figure 4. It can be seen that the kernel patterns
exhibit substantial diversity, which enables the network to
capture richer semantic information and contributes to the
module’s efficiency.
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Figure 4. The kernel visualization of the 10-th Converse2D oper-
ator in Converse-DnCNN.
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Figure 5 presents the learned A values across different
Converse2D operators in Converse-DnCNN and Converse-
SRResNet. Here are two key observations. First, A mainly
ranges from 1 x 1074 to 1 x 1073. Second, the learned
A of Converse-DnCNN differs from those of Converse-
SRResNet. This divergence likely originates from the
denoising-specific requirements, where noise in the feature
map necessitates a larger A to mitigate the ill-poseness of

Eq. (1).
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Figure 5. The visualization of the learned A in different Con-
verse2D operators for (a) Converse-DnCNN and (b) Converse-
SRResNet.
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Figure 6. Deblurring results of different methods on the image
“building” from Urban100 with noise level 2.55.
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