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A. Data Collection and Dataset Details

Our data collection system, red-rover4, is fully open
source. The data collection rig and control app are shown
in detail in Fig. 11, along with the system in its bike-
mounted configuration in Fig. 10; all parts used can be pur-
chased either off-the-shelf or 3D-printed using an ordinary
3D printer.

Bill of Materials The total cost of the bill of materials
for our data collection system is $4,440 for the base system
(Table 6). Note that the Lidar is the primary contributor to
the cost of our data collection rig; while we use an OS0-128
($12,000), it can be substituted for an OS0-64 ($8,000) or
OS0-32 ($4,000) without any hardware or software modifi-
cations, though at the cost of reduced Lidar data quality.

A detailed bill of materials including all parts used in
the data collection rig (along with CAD files for 3D printed
parts) is available in our red-rover project repository.

Resource Usage For the configurations which we used to
collect I/Q-1M, our data collection rig has the following
overall characteristics:
• Data rate: ≈120GB/hour (≈33MB/s — 260Mbps), with

some variation depending on the compressibility of the
data. In practice, we do not find storage to be a substantial
limitation, with the total dataset size being ≈3.5TB.

• Power consumption: ≈80W average. Using a 240Wh AC
battery bank, this results in around 3 hours of battery life.

A.1. Sensors
Our data collection rig includes a radar, lidar, camera, and
IMU, and records a total data bitrate of ≈260 Mbps. Almost
half of the bitrate is consumed by the radar (126 MBbps),
with the remainder being split between the Camera and Li-
dar, with a negligible amount data recorded from the IMU.

Radar “Boost” development boards for the TI 77GHz
single-chip mmWave radar family5 are commonly used in
academic research, and we are not aware of any raw single-
chip radar datasets – or tooling for data collection – which
uses other radars. As such, we use the AWR1843Boost

4As the successor to our previous rover data collection system [18],
red-rover is named for its distinctive red color.

5TI produces “Boost” series development boards across its range
of 77GHz radars including the AWR1843Boost, the largely identical
IWR1843Boost, and the AWR1642Boost, which is equivalent to the
AWR1843Boost with its middle transmit antenna removed.

Figure 10. Our data collection system, red-rover, in its bike-
mounted configuration. The sensors are mounted to a front rack,
while the support electronics are mounted in the center frame and
the battery at the rear for balance and stability.

Table 6. Bill of materials and approximate cost of major com-
ponents as of time of writing, in US Dollars; carrying equipment
(e.g., backpack, E-bike) and miscellaneous items under $100 (e.g.
cables, screws) are not listed.

Item Cost

Ouster OS0-32/64/128 Lidar $4,000-$12,000
Data Collection Computer $1,000

Black Magic Micro Studio Camera $1,000
Magewell USB-SDI Capture Card $300

OM Systems 9mm f/8 Fisheye Lens $100
TI DCA1000EVM Radar Capture Card $600

TI AWR1843Boost Radar $300
XSens MTi-3 AHRS Development Kit $450

External Storage Drive $330
Battery $240

Hardware for Handles $120
Total $4,440 + Lidar

Radar (and a DCA1000EVM capture card), which is com-
monly used in prior literature [18, 29, 45].

The AWR1843Boost has 3 transmit (TX) and 4 receive
(RX) antennas, resulting in 8 azimuth and 2 elevation bins
(Fig. 12). We configured our radar to record 256 range



(a) Data collection rig from the front; the Lidar, Camera, and Radar (red
PCB) along with its capture card (green PCB) are visible, while the IMU
is hidden inside the red (3D-printed) plastic structure.

(b) Data collection rig from behind, showing the control app; the app al-
lows users to specify metadata, then start and stop data collection. A
live console displays logged messages and errors for each sensor.

Figure 11. Close-up views of the handheld data collection rig from the front and back.
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Figure 12. Antenna configuration of the TI AWR1843Boost
radar. The 12 virtual antennas (top right) created by the radar’s
3TX × 4RX antenna array (left) result in 2 elevation and 8 azimuth
bins (lower right).

bins and 64 Doppler bins at 20 Hz, with varying range and
Doppler resolutions depending on the setting; see Table 7
for detailed specifications. In our dataset, we also collect
raw, uncompressed I/Q streams which are quantized as 16-
bit integers by the radar; with the modulations used in our
dataset, the radar has a total bitrate of 126 Mbps.

Crucially, we do not to use a high-resolution imaging
radar (e.g., the 12 × 16 antenna TI MMWCAS-RF-EVM):
in addition to their larger size, weight, and power, imag-
ing radars have an order-of-magnitude higher raw data rate
(e.g., ≈2gbps for an equivalent modulation using the TI
MMWCAS-RF-EVM), which substantially increases the
engineering and infrastructure cost of collecting raw data,
while also making continuous live streaming and real-time
deployment impractical.

Lidar We use an Ouster OS0-128 recording 2048 az-
imuth bins (1024 forward-facing) and 128 elevation beams
at 10Hz. In practice, we find that the OS0 Lidar has a

Table 7. Full radar configurations for each setting. With a fixed
frame size of Nr = 256 samples/chirp and Nd = 64 chirps/frame,
configuring the radar’s chirp rate, ADC sample rate, and chirp
slope determines the range resolution ∆R = Fsc

2Nr
and Doppler

resolution ∆D = λ
2NdTc

along with maximum range Rmax = FSc
2s

and maximum Doppler Dmax = λ
4Tc

, where λ is the radar’s wave-
length (77GHz; λ = 3.9mm) and c is the speed of light.

Setting indoor outdoor bike

Chirp Time Tc 777µs 537µs 120µs
Sample Rate Fs 5MHz 5MHz 10MHz
Chirp Slope S 67MHz/µs 34MHz/µs 34MHz/µs

∆R 4.4cm 8.7cm 8.7cm
Rmax 11.2m 22.4m 22.4m
∆D 3.8cm/s 5.6cm/s 24.9cm/s
Dmax 1.2m/s 1.8m/s 8.0m/s

maximum range of 20-25m: while points further away can
still sometimes be detected, objects are not consistently de-
tected. As such, while our radar can detect objects at much
further ranges, the Lidar forces us to restrict the maximum
range used in our dataset; we plan to acquire a longer-range
Lidar for future iterations of our dataset.

The lidar depth is LZMA-compressed, resulting in a bi-
trate of 14 Mbps. While we do not use these channels in
our paper, we also collect the reflectance and near infrared
background intensity, with a typical data rate of 9 Mbps and
22 Mbps, respectively.

Camera We use a Black Magic Micro Studio Camera
with an OM Systems 9mm f/8 Fisheye lens, recording at
1080p, 30 fps; frames are recorded as a MJPEG video, re-
sulting in a typical bitrate of 88 Mbps. To minimize motion



Table 8. Comparison with other mmWave radar datasets with raw data (4D data cube or equivalent), and a selection of other large
datasets without raw data. A frame in our table refers to the number of unique radar-sensor tuples. Our dataset is significantly larger than
previous radar datasets, enabling us to scale up training.

Radar Type Dataset 4D Data Cube Dataset Size Other Sensors

Single Chip

IQ-1M (Ours) Yes 29 hours (1M frames) Lidar, Camera, IMU
MilliPoint [7] No (3D Points) 6.3 Hours (545k frames) Depth Camera
nuScenes [6] No (3D Points) 5.5 hours (400k frames) Lidar, Camera, IMU, GPS
RaDICal [29] Yes 3.6 Hours (394k frames) Depth Camera, IMU
Coloradar [23] Yes 2.4 hours (82k frames) Lidar, IMU

CRUW [63] No (2D Map) 3 hours (400k frames) Stereo Cameras
RadarHD [45] Yes 200k frames Lidar

CARRADA [41] No (3D Cube) 21 Minutes (13k frames) Camera
RADDet [69] Yes 10k frames Camera

Cascaded
Radatron [33] No (3D Cube) 4.2 hours (152k frames) Camera
K-radar [42] Yes 35k frames Lidar, Camera, IMU, GPS
RADIal [49] Yes 20k frames Lidar, Camera, GPS

Mechanical
Oxford Radar RobotCar [3] No (2D Image) 17 Hours (240k Frames) Lidar, Camera, GPS

RADIATE [54] No (2D Image) 5.0 hours (72k frames) Lidar, Camera, GPS
Boreas [5] No (2D Image) 350km Lidar, Camera

blur, the camera is set to 18 db gain; the shutter speed is set
to automatic. Note that while our camera and capture card
are capable of 60 fps recording, we record only 30 fps since
we find that 30 fps recording is far more stable than 60 fps
(especially with regard to dropped frames), and since since
the downstream tasks which we envision cannot easily take
advantage of 60 fps video.

IMU We include a XSens MTi-3 IMU which is used for
Cartographer SLAM in conjunction with our Lidar. The
IMU records acceleration, angular velocity, and rotation at
100 Hz, with a total bitrate of 35 Kbps.

A.2. Time Synchronization
While each sensor is recorded against the same system
clock, we asynchronously record each at its full “native”
speed. To generate radar-lidar-camera samples, we align
higher frequency sensors (radar – 20Hz; camera – 30Hz)
to the Lidar (10Hz) by selecting the nearest sample in time
to each lidar frame. Since our data collection implemen-
tations for each sensor have variable initialization and de-
initialization time, we also trim regions at the start and end
of each trace which do not have coverage from all sensors.

A.3. Comparison with Other Datasets
Table 8 enumerates a number of radar datasets sorted by
radar type, along with their sizes and included sensors.
Since different types of radars have substantially different
operating modes, modulations, and data characteristics and
dimensions, we focus on single-chip radars. In this cate-
gory, prior datasets generally use TI single-chip radars such
as the TI AWR1843 family which we use [59].

Fine-Tuning Experiment In our fine-tuning experi-
ments, we elected to use the Coloradar [23] dataset due to

its inclusion of high-quality Lidar depth data and extensive
prior work using this dataset. We considered, but opted not
to use, the following datasets:
• RaDICal [29]: the depth cameras used have poor perfor-

mance, especially beyond very close ranges. Likely be-
cause of this issue, we are also not aware of a substantial
body of prior work using this dataset as a benchmark.

• RADDet [69]: RADDet is an extremely popular object
detection dataset, and a good candidate for fine-tuning.
Unfortunately, while we have been able to obtain the raw
ADC data, the ground truth labels, video, and other meta-
data are no longer available as of time of writing.

• CRUW [63]: While the original CRUW dataset appears
to include lower-level data, only 2D range-azimuth maps
are publicly available.

A.4. Dataset Details
Our dataset was collected on and around the CMU campus
and in the Pittsburgh area, and includes three data settings:
handheld indoors, handheld outdoors, and on a bike. In ad-
dition to maps of data collection areas (Fig. 13), we also
provide representative samples from each dataset (Fig. 14).

indoor: The indoor setting was collected from publicly
accessible areas within the CMU campus. Each trace gener-
ally represents a different floor (or multiple floors, in cases
where each floor is relatively small). Additionally, each
floor was covered twice: once in a forward-facing config-
uration (with the velocity mostly aligned with the radar’s
orientation), and once in a “sideways facing” configuration
(with the velocity mostly orthogonal to the radar).

outdoor: Roughly 30-minute-long traces were collected
within contiguous areas with minimal overlap, with the
radar generally facing forward. The areas visited include
CMU and Pitt university campuses, commercial areas rang-



(a) Buildings visited in the indoor split. (b) Areas covered by traces in the outdoor split.

(c) Traces in the bike split. (d) Overview of the data collection extents for each setting.

Figure 13. Maps of the train (blue) and test (orange) splits for each setting.

ing from medium to high density, and residential areas
ranging from single-family detached to high rise apartment
buildings, as well as a variety of streets ranging from small
alleys to busy “stroads.”

bike: Data was collected on approximately 60-minute-
long round-trips6 originating from our lab; each trace is split
into an inbound and outbound leg covering mostly the same
path, but in different directions. Note that there is some
overlap between the areas covered in the train and test splits
at “bottlenecks” near the CMU campus; when viewed as a
whole, we believe this is negligible.

6As one the authors was struck by a vehicle while collecting data on
bike, we urge any efforts to replicate or extend this split to minimize mental
load during data collection and use caution when planning routes. Thank-
fully, the author was uninjured, though the radar was destroyed.

B. Method Details

GRT uses a standard encoder-decoder transformer network
(App. B.1). We also document our data augmentations
(App. B.2), training tasks (App. B.3), evaluation procedure
(App. B.4), and baselines (App. B.5).

B.1. GRT Training & Hyperparameters
GRT uses a standard transformer architecture with sinu-
soidal positional encodings, and experimentally obtained
radar-specific patching parameters. For a summary of key
hyperparameters and architecture parameters, see Table 9.

Architecture Unless specified otherwise, GRT’s architec-
ture uses the following common parameters:



Figure 14. Representative samples from our dataset showing camera and range-Doppler frames from the indoor (top), outdoor
(middle), and bike (bottom) settings. Each radar plot shows the range-Doppler image of a single (azimuth, elevation) bin. When the
radar is configured with a range and Doppler resolution which is appropriate for each setting, the resulting range-Doppler frames are
remarkably similar at a visual level. Note that common types of radar noise and artifacts such as a zero doppler artifact (the straight line at
the center of each frame) and range-Doppler bleed (horizontal and vertical lines coming from bright reflectors) are clearly visible in these
examples.



Table 9. Key Hyperparameters for GRT. Except for model lay-
ers and dimensionality, which we perform scaling law ablations
on, these hyperparameters are taken from common transformer de-
sign practices as of time of writing.

Input Patch Size 128 (4× 2× 8× 2)
Input Number of Patches 2048

Output Number of Patches 1024
Layers 4 – 18

Model Dimension 256 – 768
Dimensions Per Head 64

Expansion Ratio 4.0
Transformer Norm “pre-norm”

Activation GeLU
Dropout 0.1

Batch Size 32
Optimizer AdamW
Warmup 100 Steps

Learning Rate 10−4

• We always use a simple linear patch and unpatch layers,
with the appropriate output dimensionality depending on
the task.

• All layers use a GeLU activation [16].
• Transformers use “pre-norm” (norm before, instead of af-

ter the transformer layer), which is generally regarded as
more stable [65]; when using “post-norm” (as in the origi-
nal transformer architecture [61]), we find that GRT often
diverges due to numerical instability at initialization.

• Each transformer layer has a fixed expansion ratio of 4.0
and a dropout of 0.1.

Positional Encodings In both encoder and decoder posi-
tional embeddings, we use a simple N-dimensional encod-
ing which divides the number of features equally between
each dimension and independently applies a sinusoidal en-
coding for the coordinate in that axis. To facilitate fine-
tuning for tasks with different output resolutions, we also
normalize the frequencies by the total length of each axis so
that different resolutions result in the same frequency range.

Training When training GRT, we use the following pa-
rameters for all models:
• We apply a range of data augmentations, which we find

to provide a ≈ 5% benefit (App. B.2).
• We always use a fixed batch size of 32. When training

on platforms with different GPU counts, the batch is split
equally between each GPU.

• All models are trained with a learning rate of 10−4 using
the AdamW [31] optimizer with a warmup period of 100
steps. We find this warmup period to be essential in order
to avoid initialization instability and NaN gradients.

• Each model was trained until the validation loss stopped

decreasing, as defined by three consecutive checkpoints
without a decrease in validation loss, with two check-
points taken each epoch.

Fine-Tuning Fine-tuning uses the same procedure as for
training, including termination after the validation loss
stops decreasing. The model is not frozen, with all weights
being trainable during the tuning process. In cases where
the output dimension does not match the input dimension
(e.g., 8-channel one-hot classification outputs for the Se-
mantic Segmentation objective vs. 1-channel binary classi-
fication outputs for occupancy objectives), the output layer
is also re-initialized.

Patch Size We use a patch size of 128 bins (4 range, 2
Doppler, 8 azimuth, 2 elevation) in the encoder, resulting in
2048 input patches, and square (or cubic) patches for each
output sized to maintain a fixed decoder sequence length of
1024 patches. Note that this “patches out” the azimuth and
elevation axes in the encoder; while we empirically deter-
mined that this leads to the best performance on our dataset
(Sec. 5.1), we expect the optimal patch dimensions to vary
depending on the input radar resolution.

Patch Size Alternatives In addition to the above patch
size, we tested the following alternatives:
• Range-Doppler-azimuth-elevation: carefully selecting

our patch size to keep all four axes, we create 16 range
× 8 Doppler × 8 azimuth × 2 elevation patches. This
results in a 4.18± 1.09% increase in test loss.

• Range-azimuth-elevation: we eliminate the Doppler
axis for 128 Range × 8 azimuth × 2 elevation patches.
This results in a 6.27± 1.10% increase in test loss.

• Doppler-azimuth-elevation: we eliminate the Range
axis (as much as possible) to obtain 64 Doppler × 2 range
× 8 azimuth × 2 elevation patches. This results in a
6.22± 1.11% increase in test loss.

B.2. Data Augmentations
We develop a range of data augmentations, which we ab-
late in two groups: Scale, Phase, and Flip Only, and Full
augmentations, which we use by default.

Scale, Phase, and Flip Only This group includes “sim-
ple” augmentations which can be calculated pixel-wise:
• radar scale: random scaling applied to the magni-

tude of the 4D radar data cube, with log-normal distribu-
tion exp(N (0, 0.22)) clipped to [exp(−2), exp(2)].

• radar phase: random phase offset of Unif(−π, π) ap-
plied to the phase of the 4D radar data cube (except in
ablations where no phase information is provided to the
model).



• azimuth flip: random flipping (with probability 0.5)
along the azimuth axis, i.e., swapping left and right. Note
that this augmentation also affects the ground truth for
each task.

• doppler flip: random flipping (with probability 0.5)
along the Doppler axis, i.e. swapping positive and nega-
tive Doppler. This is equivalent to reversing the direction
of travel of the sensor and all other objects in the scene;
as such, this augmentation also affects the ground truth
velocity by reversing the velocity vector.

Note that we do not apply an elevation flip since the
ground is always down!

Full In addition to the above augmentations, we include
augmentations which are equivalent to random cropping:
• range scale: ranges are multiplied by a

Unif(1.0, 2.0) scale, with the radar data cube being
cropped and scaled appropriately using a bilinear inter-
polation. The ground truth occupancy and Bird’s Eye
View are also scaled accordingly.

• speed scale: Doppler velocities are multiplied by
a log-normal exp(N (0, 0.22)) distribution, clipped to
[exp(−2), exp(2)]. All scaling is done with bilinear inter-
polation. If the velocity is scaled down, we zero-fill any
extra bins; if velocity is scaled up, we “wrap” the Doppler
velocity around to emulate the ambiguity of Doppler ve-
locity modulo the Doppler bandwidth. Finally, the ground
truth ego-motion velocity is scaled to match.

B.3. Task Details
3D Occupancy Classification Our 3D polar occupancy
task uses a binary cross-entropy loss on polar grid cells
which are created by the product set of the radar’s range
resolution with the Lidar’s azimuth and elevation resolution.
The loss is further scaled and balanced for the following:
• To facilitate joint training between different radar modu-

lation, we normalize distances by the radar range resolu-
tion, resulting in a fixed output grid for each setting.

• To correct for the sparsity of 3D occupancy grids, oc-
cupied cells are weighted greater (64.0) than unoccupied
cells (1.0).

• Since polar occupancy cells are larger when further away,
we correct for the cell size, which is proportional to r2.

Finally, to manage the memory required by dense 3D pre-
diction, we apply a 4× range, 8× azimuth, and 2× elevation
decimation, resulting in (64 range × 128 azimuth × 64 ele-
vation) bins, which we output with 1024 (8×8×8) patches.
For decimated range-azimuth-elevation grid r, θ, ϕ and 0-1
occupancy Y ∗, this corresponds to the following loss:

L(Ŷr,ϕ,θ, Y
∗
r,ϕ,θ)

= r2(1.0 + 63.0Y ∗
r,ϕ,θ)BCE(Ŷr,ϕ,θ, Y

∗
r,ϕ,θ) (1)

In addition to the test loss, we compute the Chamfer dis-
tance (by treating each occupied cell as a point), and the
mean absolute error of depth estimates obtained by finding
the first occupied cell along the range axis of our range-
azimuth-elevation occupancy.

Bird’s Eye View (BEV) Occupancy We use the same bi-
nary cross-entropy and Dice loss mixture as [45], and out-
put a 256×1024 range-azimuth polar occupancy grid which
corresponds to the native range resolution of the radar and
the native azimuth of the Lidar, restricted to forward-facing
bins. We output 1024 (16× 16) patches.

In addition to the test loss, we also compute the Chamfer
distance, using the same procedure as for 3D occupancy.

Semantic Segmentation We use the 640 × 640 output
of segformer-b5 [64], trained on ADE20k [71], as the
ground truth for this task. We aggregate the ADE20k
classes into eight broad categories (arranged by index):
0. ceiling: any structure viewed from below; mostly

seen indoors.
1. flat: flat, walkable surfaces such as sidewalks and

roads. Grass and other vegetation are excluded, and in-
cluded in nature instead.

2. nature: vegetation and other natural items such as
grass, shrubs, trees, and water.

3. object: miscellaneous small objects such as furniture
which are not included in the structure category.

4. person: any person who is not inside a vehicle or rid-
ing a vehicle.

5. sky: the sky.
6. structure: large man-made items such as buildings,

fences, and shelters.
7. vehicle: cars, trucks, buses, and other vehicles.
We output 1024 (5×5)×8 patches and train using a simple
binary cross-entropy loss. Finally, in addition to the test
loss, we also calculate the mIOU (mean intersection over
union), accuracy, and top-2 accuracy.

Ego-Motion Estimation We fuse our IMU and Lidar data
Cartographer SLAM [17], which we project back to the sen-
sor’s frame of reference to obtain Ego-Motion ground truth,
and manually exclude regions where SLAM failed (typi-
cally due to a lack of Lidar features, e.g. bridges or tunnels,
totaling ≈ 1% of our dataset).

During training, we first normalize the velocity with re-
spect to the Doppler resolution (i.e. measuring each com-
ponent in Doppler bins); then, we use the l2 loss

LEgo-Motion = ||v̂ − v∗||2 ≈
√

(v̂ − v∗)T (v̂ − v∗) + ε (2)

where ε = 1.0 Doppler bins (with a typical magnitude of
16 ≤ ||v∗||2 ≤ 32) is included for numerical stability.
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Figure 15. Width of 95% confidence intervals, in percent, relative
to the baseline of each ablation, aggregated and plotted as a his-
togram. Using our 4.5 hour (163k frame) test split, we are able
to compare methods with a median confidence interval width of
2.6% (one-sided difference of 1.3%), with the exact width varying
depending on the variance of the underlying comparison.

B.4. Evaluation Procedure
Following our evaluation procedure, we can measure differ-
ences of 1-2% with high probability (Fig. 15); we provide
details about this procedure below.

Geo-Split Within each setting, ≈1.5 hours of data are re-
served as a test set. In order to control data leakage, we split
traces for each setting along natural geographic boundaries:
• indoor: since buildings can have duplicated floor plates

and other design features between floors or different ar-
eas, data was split by building, with the evaluation set
consisting of all traces collected from 3 buildings.

• outdoor: each trace was collected as a contiguous area
on foot; we reserved a set area within a neighborhood that
includes various zoning and street types for the test set.

• bike: each trace was collected as a round-trip ride from
a set origin; two rides from a set range of directions were
reserved for the test set.

Sample Size Correction Intuitively, sampling the same
signal – such as radar-lidar-video frames – with a greater
frequency yields diminishing “information”. Since the stan-
dard error of the mean, SE = std(X)/

√
N , is defined for

N independent and identically distributed samples, we must
correct for the effective sample size of our test data.

In our analysis, we assuming that changes in model per-
formance imply changes in the underlying data (but not nec-
essarily the converse). This allows us to estimate a lower
bound on the effective sample size from each scalar perfor-
mance metric as [51]

Neff =
N

1 + 2
∑∞

t=1 ρt
(3)

for autocorrelation ρt (where t is the delay). Similar to [18],

we approximate the infinite series up to t = N/2 and clip
negative empirical autocorrelation values ρ̂t < 0 to 0.

Paired z-Test The actual values of each measured metric
have a large inherent variance due to the varying difficulty
of the data (e.g., the presence of clutter, dynamics, or other
challenging features). As such, the standard error of ab-
solute values of each metric is large. Taking advantage of
the fact that each model is evaluated on identical test traces
with respect to a baseline, and that the performance of each
model is highly correlated with its baseline, we instead use
a paired z-test, i.e., on the relative values of each metric,
which mitigates the impact of this variance.

B.5. Baseline Details

Ideally, we would like to compare GRT against off-the-
shelf baselines without any modifications. However, due
to the lack of standardization in radar hardware and mod-
ulations, radar data cubes do not have standard dimen-
sions and aspect ratios; furthermore, since radar data cubes
are generally tightly coupled with physical effects arising
from hardware and modulation design choices, dimension-
normalizing transforms such as cropping and resizing are
also not generally valid.

While transformer encoder-decoder architectures can be
readily adapted for different input and output dimensions by
simply changing the input and output context size (and po-
sitional encodings), convolutional and encoder-only archi-
tectures must be modified to fit different input and output
resolutions. Thus, to run prior baselines on our dataset, we
made the a few changes to each baseline.

RadarHD RadarHD [45] uses an asymmetric U-net with
azimuth-only 2× upsampling layers to meet the target out-
put resolution, relative to the input. Since RadarHD was
originally designed for 512 output azimuth bins instead of
the 1024 output azimuth bins in our dataset, we include an
additional azimuth upsampling layer, with other layers and
dimensions staying the same.

T-FFTRadNet T-FFTRadNet [15] uses a swin trans-
former encoder with a relatively lightweight convolutional
decoder, with some U-net-like skip connections. Since
T-FFTRadNet’s “dense” high-resolution decoder was de-
signed only for cascaded imaging radars, and the decoder
for single-chip radar was designed only for sparse outputs,
we modified the dense decoder to use the output of the back-
bone for single-chip radar by increasing the bilinear upsam-
pling size to 4× in both range and azimuth. Other layers
and dimensions are kept the same.



Figure 16. Select frames from our test set. Frames are annotated with notable features. Note that the field of view is narrower for the
camera (≈ 60◦ × 120◦) compared to the Lidar (90◦ × 180◦).

C. Additional Results
In this section, we provide sample visualizations (App. C.1)
and additional analyses (App. C.2-C.4). Note that in addi-
tion to the included figures, video examples of our model in
action can be found at our project site.

C.1. Sample Images
To better visualize the capabilities of our model, we pro-
vide a range of sample results (Fig. 16), including some
cases where our model performs better than expected, fail-
ure cases which illustrate the limitations of our approach,
and a representative random sample (Fig. 17).

Surprising Capabilities While others have tried
mmWave-radar-based semantic segmentation [24], no

prior works attempt to extract high-resolution elevation
information for tasks such as semantic segmentation or 3D
occupancy classification on such a low-resolution radar. As
such, we found it surprising that our model works at all! In
our evaluation traces, we also found additional capabilities
which further exceeded our expectations:

• Material Properties: Despite our radar’s low resolution,
it is able to correctly label pavement and grass in many
cases (Fig. 16, A), likely learning the fact that paved sur-
faces generally have specular returns, while natural sur-
faces have diffuse returns.

• Pedestrians: the model is able to correctly identify
pedestrians in many cases, likely due to the unique micro-
doppler signature of people walking (Fig. 16, B-C).

Finally, it is worth noting that a radar using GRT’s segmen-



Camera Image Segmentation GRT Segmentation Lidar Depth GRT Depth Lidar BEV GRT BEV

Camera Image Segmentation GRT Segmentation Lidar Depth GRT Depth Lidar BEV GRT BEV

Figure 17. A random sample of 15 images from the test split of I/Q-1M. 5 samples are taken from the indoor (top), outdoor
(middle), and bike (bottom) settings. All images are generated by GRT-small; the segmentation (left) and BEV (right) outputs are
trained and fine-tuned on the full dataset, while the depth output (center) is rendered from the base model’s 3D occupancy output.



Table 10. Performance metrics (App. B.3) of the GRT-small transformer model trained on our base task (3D Occupancy) and fine-tuned
on each secondary task with our full dataset (mean with 95% confidence intervals).

Task Metric Average Indoor Outdoor Bike

3D Occupancy Chamfer 4.7 bins ± 0.19 0.24 m ± 0.02 0.4 m ± 0.019 0.38 m ± 0.023
Depth 16 bins ± 0.66 0.62 m ± 0.059 1.5 m ± 0.09 1.4 m ± 0.089

Semantic Segmentation mIOU 0.69± 0.012 0.78± 0.02 0.63± 0.019 0.69± 0.018
Accuracy 0.79± 0.0097 0.85± 0.016 0.75± 0.016 0.78± 0.016

Top-2 Accuracy 0.94± 0.0053 0.97± 0.006 0.92± 0.01 0.93± 0.011
BEV Classification Chamfer 11 bins ± 0.91 0.28 m ± 0.027 0.84 m ± 0.13 1.3 m ± 0.19

Ego-Motion Estimation Speed 0.95 bins ± 0.093 0.025 m/s ± 0.0022 0.025 m/s ± 0.0024 0.091 m/s ± 0.047
Angle 4.2◦ ± 0.46 5.9◦ ± 0.54 5◦ ± 0.61 1.9◦ ± 1.3
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Figure 18. Scaling laws for the depth mean absolute error (top) and chamfer distance (bottom) metrics, measured in radar range bins
(4.4cm indoor, 8.7cm outdoor, bike).

tation capability can operate in conditions when cameras
cannot such as fog, smoke, and darkness.

Failure Cases To highlight a few failure cases for GRT:
• Fine-Grained Classification: using only a low-

resolution radar without any visual or Lidar inputs, a
pure radar transformer has no way of differentiating fine-
grained classes such as metal dumpsters (in the object
class) from the vehicle class (Fig. 16, D).

• Static People: without the unique micro-doppler signa-
ture associated with walking, our model often fails to de-
tect people who are standing or sitting still (Fig. 16, E).

• Limited Vertical Resolution: the vertical field of view
of our radar is relatively limited, with a 6dB-beamwidth
of ±20°. Thus, even with Doppler information to help re-

solve elevation information (beyond the 2 elevation bins
measured by our radar), the model cannot reliably esti-
mate regions at the edge of the Lidar or Camera’s vertical
field of view (Fig. 16, F).

• Clutter: when a scene is very cluttered, GRT can fail
to resolve individual objects; this generally leads to large
hallucinations (Fig. 16, B, G).

C.2. Absolute Metrics
Since each task has a number of possible metrics (which are
not always aligned), we generally report metrics as relative
test losses to best capture the performance of the model in
its ability to fit the target loss.

Key Metrics As an absolute reference, we calculated a
range of common performance metrics for each objective
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Figure 19. Sample sequences of three consecutive frames before (top) and after (bottom) stopping at a red light. Video frames are
provided for reference (left), with GRT’s semantic segmentation (center left) and depth (center right) outputs across the two sequences along
with the range-Doppler spectrum. After stopping, the Doppler spectrum (horizontal axis; right) collapses to a single Doppler bin, resulting
in significantly decreased information available to the model. This manifests as noisier (as seen by larger frame-to-frame variations and
hallucinations) and less accurate predictions by the model.

(Table 10) as described previously (App. B.3). For these
metrics, SI units are reported where applicable; distance
and speed metrics are normalized by range and Doppler res-
olutions, respectively, when aggregating over settings with
different radar configurations.

Absolute Scaling Laws As an alternate version to Fig. 6,
we also measured scaling laws with respect to the depth
and chamfer metrics (Fig. 18); while somewhat noisier, the
same general trend can be seen. Note that this noise is also
why we compare loss metrics in our scaling laws and ab-

lations since it serves as a more direct measure of relative
“learning” performance.

C.3. Impact of Doppler

To further illustrate the impact of Doppler, we measured
the test loss of our objectives (other than Ego-Motion esti-
mation), binned against the sensor speed (Fig. 20). When
the sensor’s speed is low relative to its maximum Doppler,
it captures less Doppler information due to our radar’s fixed
Doppler resolution, leading to degraded performance. This
can also be seen qualitatively: when the data capture rig
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Figure 20. Relative test losses binned by the speed of the data
collection rig (20 equal 5% bins) on the bike subset; due to less
available Doppler information, lower speeds are associated with
higher losses for each of our tasks.

stops, the GRT model’s predictions become noisier, less
sharp, and tend to show blocky artifacts aligned with the
output patch size (Fig. 19).

C.4. Scaling Law Projections
To motivate future work scaling data collection and training
for single-chip radar models using 4D data cubes, we run
a suite of scaling law experiments to obtain rough, order-
of-magnitude estimates for the data requirements of “fully”
training GRT foundational model (Sec. 5.4) of a similar size
to the relatively small (by vision standards) models which
we trained. In this section, we describe additional details
and assumptions behind our two methods of estimation.

Extending the Scaling Law In order to estimate data re-
quirements from our scaling law, we start from the assump-
tion that data scaling will always be at most logarithmic.
This is based on the intuition that increasing the size of the
dataset will always have diminishing returns (in turn at a
diminishing rate), which is consistently observed in other
scaling experiments [68].

We then train a network only on the test set, without any
augmentations; we reason that this provides a lower bound
on the achievable test loss (due to random, unpredictable
noise in the dataset) for a given architecture, given that the
model is not large enough to memorize the test set pixel-
for-pixel. Note that this also provides an improvement over
a naive lower bound from the fact that L > 0.

Combining these two implies that data scaling can be
logarithmic for increasing dataset size up to at most 100×
our current dataset size, which we believe represents a rea-
sonable order-of-magnitude estimate for the data require-
ments for a “fully trained” radar foundational model.

Training Curve Patterns In our experiments, we observe
that all models tend to stop improving with respect to val-
idation loss after approximately 10 epochs (Fig. 21). This
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Figure 21. Validation loss improvement per epoch, measured ev-
ery checkpoint (2 checkpoints/epoch), and smoothed with a 5-
checkpoint median filter. Each line refers to a different model
(with different sizes); models are separated by dataset size. Our
models consistently tend to stop improving (in validation loss) af-
ter around 10 epochs of training.

gives a further avenue for projections: assuming that the
informational “value” of a radar frame is roughly equiva-
lent to an image, we can take rough numbers for the typical
number of samples seen used to train a vision transformer
and translate this to data requirements for a radar founda-
tional model.

Note that this assumption of informational equivalence is
also quite rough. Unlike vision transformers, which are typ-
ically trained on independent images scraped from the inter-
net, GRT is trained using dependent frames sampled from a
time-series of sensor data, decreasing the relative informa-
tion density of radar time-series data. On the other hand,
while vision transformers typically use sparse feedback sig-
nals such as image-caption [47] or image-label [68] pairs,
GRT is trained using dense feedback in the form of a 3D oc-
cupancy grid (App. B.3). In principle, this increases the rel-
ative information density of radar-Lidar training pairs. Our
projection therefore assumes that these factors roughly bal-
ance out within an order of magnitude.


