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A. Summary
This supplementary material offers detailed technical in-
formation on key components of our proposed framework,
which were abbreviated in the main text. Specifically, we
elaborate on the following: the target classifier 𝐶𝑙𝑎𝑠, the
examples in template and the details of the sentence match-
ing algorithm in Section 3.1; details of the loss function in
Section 3.5.

B. Target Classifier 𝐶𝑙𝑎𝑠
The target label classifier, denoted as 𝐶𝑙𝑎𝑠, is designed to
regress the target’s class label from an input query𝑄. By de-
termining the category of𝑄, we then determine which word
in𝑄 belongs to that category to determine which word to use
as the Target. Essentially, 𝐶𝑙𝑎𝑠 processes an input sentence
by first encoding it via a pre-trained BERT [2] model to ob-
tain a semantic embedding, and then maps this embedding
through a multi-layer perceptron (MLP) to yield a probabil-
ity distribution over 𝐶 target classes.

Specifically, given an input query 𝑄, we first compute its
embedding:

𝐹𝑄 = BERT(𝑄), (1)

where 𝐹𝑄 ∈ R𝐾×𝑑 represents the BERT output for the query
𝑄, with 𝐾 being the number of tokens in 𝑄 and 𝑑 denot-
ing the feature dimension. We select the embedding cor-
responding to the [CLS] token as the aggregate representa-
tion ℎ. This ℎ is then fed into the MLP-based classification
head of 𝐶𝑙𝑎𝑠, implemented as a fully connected layer that
produces logits 𝑧 ∈ R𝐶 . These logits are subsequently con-
verted into a probability distribution over the 𝐶 classes via
the softmax function:

𝑃(𝑐 | 𝑄) = exp(𝑧𝑐)∑𝐶
𝑗=1 exp(𝑧 𝑗 )

, (2)

where 𝑧𝑐 denotes the 𝑐-th element of 𝑧.

The classifier 𝐶𝑙𝑎𝑠 is trained by minimizing the standard
cross-entropy loss:

Lcls = −
𝐶∑
𝑐=1

𝑦𝑐 log
(
𝑃(𝑐 | 𝑄)

)
, (3)

where 𝑦𝑐 is the one-hot encoded ground-truth label for class
𝑐. During inference, the predicted target label is given by:

𝑇𝑙𝑎𝑏 = arg max
𝑐

𝑃(𝑐 | 𝑄). (4)

In summary,𝐶𝑙𝑎𝑠 effectively bridges the input query and
the target object label by leveraging BERT-based encoding
followed by MLP-based classification, ensuring robust tar-
get label regression in language-conditioned 3D grounding.

C. Examples in SRD Module’s Template
In our Simple Relation Decoupling (SRD) module, differ-
ent examples help LLMs in comprehending various descrip-
tions of spatial relationships. To emphasize those relation-
ships that are particularly sensitive to viewpoint changes, we
select spatial relations whose interpretation can vary signif-
icantly with the observer’s perspective. All examples we
used are as follows:
• The {target} is close to the {anchor}.
• The {target} is far away from the {anchor}.
• The {target} is on the left of the {anchor}.
• The {target} is on the right of the {anchor}.
• The {target} is in front of the {anchor}.
• The {target} is behind the {anchor}.

D. Sentence Matching Algorithm
As mentioned in Section C, we predefine an Example Set 𝐸 ,
which consists of 𝑘 examples in total. Given an anchor, it
returns 𝑘 sentences. We employ a Sentence Matching Algo-
rithm, as outlined in Algorithm 1, to select the sentence that



Algorithm 1 Sentence Matching Algorithm
1: Input: Utterance𝑈, Anchor set 𝑂, Target label 𝑦
2: 𝑁𝑞 = len(U), 𝑁𝑎𝑛𝑐ℎ𝑜𝑟 = len(O)
3: For each anchor in Anchor set 𝑂 do:
4: For each example in Example set 𝐸 do:
5: query = ApplyTemplate(𝑈, anchor, example)
6: sentences = LLM(query)
7: tokens = Tokenizer(𝑈, sentences)
8: Predict labels = 𝐶𝑙𝑎𝑠(token)
9: 𝑆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 = GetConsistScore(Predict labels)

10: 𝑆𝑠𝑖𝑚𝑖𝑙𝑎𝑟 = GetSimilarScore(sentences,U)
11: Score = ComputeScore(𝑆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 ,𝑆𝑠𝑖𝑚𝑖𝑙𝑎𝑟 )
12: Update the simplified sentence and Max_Score
13: End for
14: Anchor_LLMsentence.append(simplified sen-

tence)
15: End for
16: Output: Sentence with Maximum Similarity

best aligns semantically with the original sentence. Specif-
ically, after the input of the target, a single anchor, and 𝑘
examples, we obtained 𝑘 candidate sentences, denoted as
𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑘}, and the original complex query is de-
noted as 𝑆𝑞 through LLMs. All sentences are then predicted
through the Target Classifier 𝐶𝑙𝑎𝑠, to obtain pseudo-label
𝑃̂𝑞 and 𝑃̂𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑘}. The matching score consists of
two components. The first is the consistency score, which
is the evaluation score for maintaining consistency of the
pseudo-label between the generated sentence and the query.
The corresponding 𝑆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 is formulated as follows:

𝑆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 =

{
1, if 𝑃̂𝑞 = 𝑃̂𝑖 ,

0, otherwise.
(5)

To preserve the semantic integrity of the generated sen-
tence while preventing redundant generation from LLMs,
we introduce the second part of the evaluation score: the
similarity score. This score primarily considers the shared
word count and the lengths of the sentences. We break down
both sentences into individual words and calculate the num-
ber of shared words 𝑁𝑐𝑜_𝑤𝑜𝑟𝑑 between 𝑆𝑖 and 𝑆𝑞 . To coun-
teract the advantage of longer sentences in similarity calcu-
lation, we employed TextRank Algorithm[4] to compute the
sentence similarity, denoted as 𝑆𝑆𝑖𝑚𝑖𝑙𝑎𝑟 . Finally, the simi-
larity score is calculated by dividing the shared word count
by the sum of the logarithms of the lengths of the two sen-
tences. The formula is as follows:

𝑆𝑆𝑖𝑚𝑖𝑙𝑎𝑟 =
𝑁𝑐𝑜_𝑤𝑜𝑟𝑑

log(𝑁𝑞) + log(𝑁𝑠)
, (6)

where 𝑁𝑞 and 𝑁𝑠 denote the length of the query and the
generated sentence. In addition, we have defined an ideal

decoupling sentence length 𝑁∗ based on the length of the
sentence and the number of anchors in the sentence. Us-
ing 𝑁∗ as the center, the corresponding weights are obtained
with a peak value 1, gradually decaying towards both ends.
For instance, if 𝑁𝑞 is 7 and there are 2 anchors, the weight
probability distribution would be {0.4, 0.6, 0.8, 1, 0.8, 0.6,
0.4}. When 𝑁𝑠 = 2, the corresponding weight probability
𝑤 is 0.6. Therefore, the corresponding formula for the score
is as follows:

Score = 𝑤 · 𝑆𝑆𝑖𝑚𝑖𝑙𝑎𝑟 + 𝑆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 . (7)

E. Loss Function
Object-level Loss LObject: Followed by MVT[3], semantic
class representations {𝐿𝑐} are obtained by encoding class
name tokens with a pre-trained language encoder and ex-
tracting the [CLS] token. Given projected object features
𝐹′ ∈ R𝑁×𝐷 (for 𝑁 objects with feature dimension 𝐷) and
class representations 𝐿 ∈ R𝐶×𝐷 , we compute the predicted
logits as

𝑃obj = 𝐹
′ · 𝐿𝑇 ∈ R𝑁×𝐶 . (8)

The ground truth is represented as a one-hot encoded ma-
trix 𝑇obj ∈ R𝑁×𝐶 . The object-level loss is then defined as

LObject = −
𝑁∑
𝑗=1

𝐶∑
𝑐=1

𝑇obj ( 𝑗 , 𝑐) log
(
softmax(𝑃obj) 𝑗𝑐

)
. (9)

This loss ensures that the object features capture critical
geometric properties, such as shape and center, and align
accurately with their semantic categories.

Referential Loss L𝑃
ref: To supervise spatial alignment,

followed by CoT3DRef[1], , we obtain in parallel the anchor
position labels Tanchor ∈ R𝐼 and the target position label
Ttarget ∈ R1, and concatenate them to form the referential
ground truth

Tref = concat
(
Tanchor, Ttarget

)
∈ R(𝐼+1) , (10)

where each element 𝑇ref, 𝑝 (for 𝑝 = 1, . . . , 𝐼 + 1) indicates
the correct object index (among the 𝑖 objects present in the
scene) for that spatial position. After view aggregation and
prediction head, the model outputs referential logits 𝐿ref ∈
R(𝐼+1)×𝑖 , where each row corresponds to a spatial position
(anchor or target) and each column represents one of the 𝑖
objects. The referential loss is defined as

L𝑃
ref = − 1

𝐼 + 1

𝐼+1∑
𝑝=1

log
exp

(
𝐿ref, 𝑝,𝑇ref, 𝑝

)∑𝑖
𝑟=1 exp

(
𝐿ref, 𝑝,𝑟

) . (11)

This loss encourages the textual module to generate dis-
criminative features that accurately capture the semantic nu-
ances of the grounding statement, effectively distinguishing
between the anchor and target labels.



Sentence-level Loss LSent: Followed by CoT3DRef[1],
we supervise the textual module using a standard cross-
entropy loss. Let 𝐼 denote the number of anchor class labels
in the original sentence. For each sample, we form a label
sequence by concatenating the 𝐼 anchor labels with one tar-
get label, yielding a sequence of length

𝑆 = 𝐼 + 1. (12)

After Textual Aggregation, the classification head produces
language prediction logits Psent ∈ R𝑆×𝐶 , where 𝐶 is the to-
tal number of classes. The ground truth is represented as a
vector Tsent ∈ R𝑆 , with each element 𝑇sent,𝑖 indicating the
correct class index for the 𝑖-th position. The language loss
is defined as

LSent = −1
𝑆

𝑆∑
𝑖=1

log
exp

(
(Psent)𝑖,𝑇sent,𝑖

)∑𝐶
𝑗=1 exp

(
(Psent)𝑖 𝑗

) . (13)

This loss encourages the textual module to generate dis-
criminative features that accurately capture the semantic nu-
ances necessary for language grounding.

F. t-SNE visualization of CCVTS

Figure 1. t-sne Visualization of CCVTs.

To further investigate how CCVTs encode perspective in-
formation, we visualize the learned features using t-SNE, as
shown in Fig. 1. Tokens originating from different view-
points form well-separated clusters, while those from the
same viewpoint are closely grouped. This clear structural
separation illustrates that CCVTs effectively capture and
preserve view-specific semantics, which are essential for ac-
curate cross-view alignment in 3D visual grounding.

G. Analysis of Loss Weight.
Table 1 presents an ablation study on the weighting scheme
of the loss components L𝑅𝑒 𝑓 , L𝑂𝑏 𝑗 , and L𝑆𝑒𝑛𝑡 . The best
accuracy of 69.9% is achieved when the loss weights are set
to 𝜆𝑂𝑏 𝑗 = 1.0, 𝜆𝑅𝑒 𝑓 = 0.5, and 𝜆𝑆𝑒𝑛𝑡 = 0.5, confirming the
effectiveness of our multi-loss formulation with this specific
weighting scheme.

Table 1. Ablation on loss weights.

𝜆𝑅𝑒 𝑓 𝜆𝑂𝑏 𝑗 𝜆𝑆𝑒𝑛𝑡 Accuracy (%)

1.0 1.0 0.0 69.1
1.0 0.0 1.0 63.9
1.0 0.25 0.25 68.4
1.0 0.5 0.5 69.9
1.0 0.75 0.75 69.6
1.0 1.0 1.0 69.8

Notably, omitting either L𝑂𝑏 𝑗 or L𝑆𝑒𝑛𝑡 leads to signif-
icant performance degradation (to 63.9% and 69.1%, re-
spectively), highlighting the importance of jointly model-
ing object-level and sentence-level supervision. We also ob-
serve that moderate weighting (e.g., 0.25 or 0.5) for L𝑂𝑏 𝑗
and L𝑆𝑒𝑛𝑡 improves over their absence, but still underper-
forms compared to the balanced setting. These results val-
idate that all three components contribute synergistically to
grounding performance.
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