
When Anchors Meet Cold Diffusion: A Multi-Stage Approach to Lane Detection

Supplementary Material

Algorithm 1: Training algorithm
Require: Restoration model Rθ, lane degradation

process Dα, image degradation process
Dγ

Input: Image I, predefined anchors A
Output: Training loss

1 Convert image I to resolution γT , IT ← Dγ(I, T );
2 Obtain initial prediction Â0 ← Rθ(A, T, IT );
3 Choose a random timestep

t←Uniform({1, . . . , T});
4 Convert image I to resolution γt, It ← Dγ(I, t);
5 Produce degraded lanes At ← Dα(Â0, t); (using

Eq. 6)
6 Predict result by Rθ(A

t, t, It);
7 Calculate the training loss Ltotal; (using Eq. 9)

Algorithm 2: Inference algorithm
Require: Restoration model Rθ, lane degradation

process Dα, image degradation process
Dγ , total diffusion step T , interval ∆t

Input: Image I , predefined anchors A
Output: Final prediction result A0

1 Start from predefined lane anchor A
2 for t = T, T −∆t, . . . , 1 do
3 Convert image I to resolution γt, It ← Dγ(I, t);
4 Obtain prediction Â0 ← Rθ(A, t, It);
5 if t > 1 then
6 Refine target estimation via Eq. 4

A← A−Dα(Â0, t) +Dα(Â0, t−∆t);
7 else
8 return Â0

9 end
10 end

A. Implementation Details

Architecture. Our restoration network Rθ builds on CLR-
Net [53]. It adopts either a ResNet [13] or DLA [50] back-
bone, followed by an FPN [21] to extract multi-scale feature
maps. These feature maps are then cropped according to the
degraded lane At, and the resulting cropped features pass
through several convolutional and fully connected layers to
produce final lane predictions together with their associated
confidence scores. Notably, this architecture modification
affects only the input and the training objective, keeping the

Figure 4. mF1 and FPS with a different number of iteration steps.

Figure 5. Comparisons with Different α.

core pipeline structure intact. As a result, CDiffLane can be
integrated into any anchor-based lane detection framework
with minimal additional overhead.
Training Configuration. All input images are resized to
320 × 800 in both training and testing. We follow the data
preprocessing strategies in [53], applying random transla-
tion, rotation, scaling, and horizontal flipping to enhance
generalization. Our optimization uses the AdamW opti-
mizer with an initial learning rate of 5 × 10−4 under a co-
sine decay schedule. On CULane, training proceeds for
15 epochs, while on TuSimple, it runs for 70 epochs; both
use a batch size of 24.To stabilize the training process, we
fix the learnable parameter α at the initial stages and allow
it to become learnable after the model acquires sufficient



knowledge about lane detection. All experiments are con-
ducted in PyTorch on a single NVIDIA RTX 4070 GPU.
The number of sampling points is Ns = 72, the number of
lane anchors is N = 192, and we adopt a linear schedule
for γ, ranging from 1.8 to 1. For the loss weights, we set
λcls = 2, λxytl = 0.2, and λiou = 4.
Inference Procedure. During inference, the network out-
puts a 6D vector (xp, yp, θp, l, δx, c) per lane hypothesis,
where c denotes the confidence score. We then apply non-
maximum suppression (NMS) to filter out redundant de-
tections, retaining only the highest-confidence lanes. This
ensures the final lane set is both accurate and minimally re-
dundant.

B. Evaluation Metrics
For the CULane dataset, we evaluate lane prediction accu-
racy using the F1-measure, computed via the Intersection-
over-Union (IoU) between predicted and ground-truth
lanes. A prediction is deemed a true positive (TP) if its
IoU exceeds a given threshold; otherwise, it counts as a
false positive (FP) or false negative (FN). Formally, the F1-
measure is:

F1 =
2× Precision×Recall

Precision+Recall
, (10)

where Precision = TP
TP+FP and Recall = TP

TP+FN . In
our experiments, we report F1@50 and F1@75, which ap-
ply IoU thresholds of 0.5 and 0.75, respectively. Notably,
the higher threshold (0.75) offers a more stringent test of
precise lane localization, allowing us to highlight improve-
ments in fine-grained accuracy. In addition, we also report
mF1 score as one of the metrics. It is defined as:

mF1 = (F1@50 + F1@55 + · · ·+ F1@95)/10. (11)

For the TuSimple dataset, a lane is deemed correct if
more than 85% of its predicted points fall within a 20-pixel
radius of the corresponding ground truth. Based on this cri-
terion, the benchmark accuracy metric is computed as:

Accuracy =
ΣclipCclip

ΣclipSclip
, (12)

where Cclip is the number of correctly predicted points and
Sclip is the total number of ground-truth points of a image
respectively. TuSimple tracks False Positive (FP) and False
Negative (FN) rates, where FP =

Fpred

Npred
and FN =

Mpred

Ngt
.

C. Supplementary Experiments
Iterative evaluation. We perform an experiment to exam-
ine how mF1 varies with the number of inference steps and
the resulting speed (FPS). As shown in Fig. 4, the iterative
strategy indeed improves performance but lowers the num-
ber of tasks the model can process per second. While this

trade-off may be acceptable for tasks such as high-density
map construction, it can be less ideal in time-critical set-
tings. Notably, even when reducing the iterative steps to
just one—yielding an FPS above 140—our CDiffLane still
surpasses GSENet, highlighting its robustness under lower
iteration budgets.
Learned α comparison. To evaluate the effectiveness of
our approach, we compare the curve of the learned α with
several commonly used variation schedules, including sig-
moid, cosine, and linear. Initially α is set using a lin-
ear schedule and is continuously updated throughout the
training process. The results, illustrated in Figure 5, indi-
cate that the learned α follows a concave trajectory on a
line chart, distinguishing it from all predefined schedules.
This observation suggests that a fixed variation schedule
may limit model performance, preventing optimal adapta-
tion. Additionally, since we progressively provide images
of increasing resolution during inference, it is reasonable
that the learned α follows a concave pattern. At the ini-
tial timesteps, where low-resolution images contain mini-
mal information, the model learns to reduce their contribu-
tion to the final prediction by lowering the variation magni-
tude. Conversely, at later stages, as high-resolution images
become available, the model increases the variation magni-
tude, leveraging the enriched details to refine its predictions
more effectively. This adaptive scheduling mechanism un-
derscores the importance of a learnable variation schedule,
enabling the model to achieve superior accuracy and robust-
ness.


