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Supplementary Material

A. Implementation Details

A.1. Model Configuration
The high reference frame rate is fixed at fref = 120, while
the input frame rate fi and time interval length T are con-
figurable by design. We fix the interval length T = 0.5 em-
pirically. For all transformer encoders and decoders, we set
the embedding dimension to dm = 512 and use 8 heads for
multi-head self-attention. The number of layers is set to 3,
except for the trajectory refiner, which uses 2 layers.

A.2. Pretraining
The model is pretrained without the feature integrator F on
the AMASS dataset [6], following the setup of WHAM [9].
The input frame rate fi is randomly sampled from the set
F = {10, 15, 24, 25, 30, 45, 48, 50, 60, 75, 90, 120}. Given
the input frame rate, 2D joints and angular velocity are in-
terpolated using linear interpolation, following Eq. (9) and
Eq. (10) from the main paper. The output 3D motion se-
quence is upsampled if the target frame rate is lower than
fref = 120, ensuring consistency across training. The loss
function weights are set to λ2D = 0.1, λ3D = 0.4, λSMPL =
8.0, λV = 0.5. The model is trained for 200 epochs with a
batch size of 64, twice as long as WHAM, as learning to
predict high reference frame rate from varying lower frame
rate inputs is more challenging. We use the AdamW opti-
mizer [5] with an initial learning rate of 5 × 10−4 and a
weight decay of 0.05. To stabilize training, learning rate de-
cays by a factor of 10−1 at epochs 120 and 160.

A.3. Finetuning
Using the pretrained model, we finetune on video
datasets, including 3DPW [10], Human3.6M [2], MPI-INF-
3DHP [7], and InstaVariety [3], and BEDLAM [1] to adapt
the model to video inputs. To leverage diverse motion pat-
terns, the AMASS dataset is also included in finetuning
with zero image feature vectors. For AMASS, we follow
the same pretraining protocol, randomly sampling fi from
F and interpolating input and output sequences. For video
datasets, the input frame rate matches the original video
frame rates: 30 FPS for 3DPW, 50 FPS for Human3.6M, 25
FPS for MPI-INF-3DHP, and 24–30 FPS for InstaVariety.
Despite finetuning on fixed-frame-rate videos, the model
generalizes well to variable-frame-rate inputs due to the
inclusion of AMASS during training. The loss function
weights are set to λ2D = 3.0, λ3D = 6.0, λSMPL = 1.0,
λV = 0.01. The finetuning process spans 80 epochs with a

batch size of 64, again double that of WHAM as in the pre-
training stage. The learning rate for the feature integrator is
set to 10−4, while the rest of the model uses a learning rate
of 10−5, both with a weight decay of 0.05. Learning rates
decay by 10−1 at epochs 40 and 60 for stabilization.

B. EMDB-FPS Dataset

To evaluate frame rate-agnostic human motion estima-
tion, we constructed the EMDB-FPS dataset by augment-
ing the EMDB dataset [4]. We first augmented the videos
to various frame rates, specifically frame rates F =
{10, 20, 30, 60, 120}. Starting from the source video frame
rate of 30 FPS, we generated lower frame rate videos (10
FPS and 20 FPS) via downsampling and higher frame rate
videos (60 FPS and 120 FPS) via upsampling. Figure 1
illustrates the construction process for lower and higher
frame rates from the original source video. For upsampling,
we use a video frame interpolation method [8] to synthesize
intermediate frames. The annotation labels, such as the 2D
joint locations, 3D SMPL parameters, and camera trajec-
tory, are also augmented to match the new frame rates. For
the 2D joint locations, they are initially labeled via linear
interpolation, and further fine-tuned using ViTPose detec-
tions [11]. For the 3D SMPL parameters, we use the original
SMPL parameters from the EMDB dataset and interpolate
them to match the new frame rates. As the interpolated mo-
tion does not represent the actual human motion, we further
refine the 3D SMPL parameters using the ViTPose detec-
tions. Specifically, we reproject the 3D joint locations com-
puted from the SMPL parameters to the 2D joint locations,
and optimize the SMPL parameters to minimize the repro-
jection error with the VITPose detections. The camera tra-
jectory is also interpolated to match the new frame rates,
assuming a constant velocity model. This augmentation en-
sures a comprehensive evaluation of the model’s robustness
across a wide range of frame rates.
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Figure 1. The construction process of multiple frame rate videos in the EMDB-FPS dataset.
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