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Supplementary Material

A. More Qualitative Results and Ablation
Studies

A.1. More Qualitative Results
We provide qualitative results of the anonymized data gen-
erated using our PABP framework for VQA in Fig. 1 and
more qualitative results for action recognition in Fig. 2. We
also show more visualizations of the anonymized data gen-
erated by our method on the testing set of VISPR dataset
[28] in Fig. 3. As can be observed, our method effectively
maintains the LMM’s performance and can successfully
remove private information (e.g., face, nudity, and credit
card).

A.2. More Ablation Studies
Impact of the decision boundary. Our framework ex-
plores the decision boundary between “satisfactory” and
“unsatisfactory” LMM utility states to guide the optimiza-
tion with access only to the LMM’s final label outputs. Al-
ternatively, as mentioned in Sec. 3.1 in the main paper, by
assigning “satisfactory” LMM utility as 1 and “unsatisfac-
tory” as -1 as the LMM utility loss function, it is also pos-
sible to estimate gradients for the black-box LMM to up-
date the anonymization model. Here we investigate this
approach. Specifically, we conduct experiments with the
following baselines (using the above defined LMM utility
loss function) and compare them with our method. In Ran-
dom search, we adopt the random search method [2]. In
Reinforcement learning, we employ reinforcement learning
mechanism [16]. In Zeroth-order optimization, we employ
zeroth-order optimization [22] to estimate gradients for the
black-box LMM’s utility. As shown in Tab. 1, our method
significantly outperforms all baselines, demonstrating its ef-
fectiveness.

Method Action (Acc.↑) Privacy (cMAP↓)
Random Search [2] 30.1 62.9
Reinforcement Learning [16] 32.6 61.3
Zeroth-order Optimization [22] 35.5 60.1
Ours 47.9 54.3

Table 1. Impact of decision boundary.

Impact of the utility budget. In our PABP framework,
the LMM’s utility status is determined with a utility bud-
get τ . Here, we investigate the impact of different utility
budgets. As shown in Tab. 2, increasing τ leads to better
LMM’s utility, while decreasing τ shows stronger privacy
protection performance. Thus, by controlling τ , we can ob-
tain different trade-offs between privacy and utility.

More experiments on the GEP scheme. In our GEP
scheme, we first initialize the anonymization model and

Method Action (Acc.↑) Privacy (cMAP↓)
τ = 0.8 42.0 50.1
τ = 0.85 45.3 52.7
τ = 0.9 47.9 54.3
τ = 0.95 50.0 57.4

Table 2. Impact of utility budget.

then apply probing scheme to update it to the “satisfac-
tory” side. In Tab. 5 of the main paper, to evaluate this
design, we have compared with the variant without probing
that skips the probing in GEP. We here further investigate
the impact of initializing the model with different surrogate
utility models (VGG [32], R3D [9], and ViT [7]). As shown
in Tab. 3, using different initialization, the performances of
our framework remain stable and all outperform previous
methods in Tab. 1 in the main paper, showing the effective-
ness of our design.

Method Action (Acc.↑) Privacy (cMAP↓)
Initialization with VGG 47.7 54.3
Initialization with R3D 47.9 54.3
Initialization with ViT 47.8 54.1

Table 3. Impact of different initialization. Note that our framework
with different initializations all outperform previous methods.

Impact of the radius d in the GEP scheme. In our
GEP scheme, we start probing the decision boundary with a
sphere with radius d. Here we investigate its impact on the
performance of our PABP framework. As shown in Tab 4,
our PABP stably achieves good performance with different
d. We adopt d = 0.05 in our main experiment.

Method Action (Acc.↑) Privacy (cMAP↓)
d = 0.005 47.5 54.4
d = 0.05 47.9 54.3
d = 0.5 47.6 54.5
d = 5 47.8 54.6

Table 4. Impact of initial radius d.

Impact of Hessian Approximation. In the PGP
scheme, we follow the common and efficient practice [20,
33] to use the Fisher Information Matrix (FIM) to approxi-
mate diagonal Hessian. Here we also approximate Hessian
via other approaches (e.g., L-BFGS [18] and K-FAC [24])
to derive loss contour line and conduct the PGP scheme.
As shown in Tab. 5, our framework consistently achieves
good performance with different methods to approximate
Hessian.

Training time. We show the approximated training time
of our PABP framework in Tab. 6.



Figure 1. Qualitative results of anonymized VQA images. For each row, we show the raw image, the anonymized image generated using
our method, the question, the LMM answer, and the groundtruth answer. The LMM answer is generated by feeding the fixed off-the-shelf
LMM (LLaVA) with the anonymized image and the question. An LMM answer is considered to be correct if it matches the groundtruth
answer following the evaluation rule in [1, 3], and the LMM answers in the examples shown above are all considered correct.

Method Action (Acc.↑) Privacy (cMAP↓)
PABP with L-BFGS 47.9 54.7
PABP with K-FAC 47.6 54.4
PABP with diagonal FIM 47.9 54.3

Table 5. Results of using different methods to approximate Hes-
sian.

Approximated Training Time
GEP 2 hrs
PGP 16 hrs
Total training time 18 hrs

Table 6. Training time.

B. Further Analysis
White-box setting. In the experiments in the main pa-
per, we consider the LMM as a black-box model where
we only have access to its output. Here, as an investiga-
tion, we also explore the white-box scenario where we re-
lax the constraint and allow gradient backpropagation from

the frozen LMM. We take the VQA task as an example to
use the obtained gradient from LMM (LLaVA) to update
the anonymization model. As shown in Tab. 7, even with
the black-box scenario, our PABP can achieve results close
to the white-box setting, showing its efficacy.

Method VQA (Acc.↑) Privacy (cMAP↓) VISPR (cMAP↓)
White-box setting 58.5 44.0 48.9
Black-box setting 57.3 44.2 51.4

Table 7. Results of white-box setting.

Analysis on the Transferability between utility tasks.
We investigate the transferability of our method between
different utility tasks. Specifically, during training, we train
the anonymization model w.r.t. the action recognition task
on UCF101-VISPR benchmark [35], and evaluate on the
VQA task. As shown in Tab. 8, even directly applying
the trained anonymization model with another utility task
(i.e., action recognition), the LMM’s performance on the



Figure 2. Qualitative results of anonymized data (action video frames). In each row, we show the raw data, the groundtruth action class,
the anonymized data, and the predicted action class. As shown, the LMM (Video-LLaVA) can correctly predict the action class given the
anonymized data, while the privacy information such as faces and skin color in the anonymized data is protected.

VQA task can still be comparable to the performance when
training on the VQA task, showing the transferability of our
framework across utility task.

Method VQA (Acc.↑) Privacy (cMAP↓)
Trained with action recognition 56.2 45.7
Trained with VQA 57.3 44.2

Table 8. Results of transferability between utility tasks.

More analysis about the downsampling method. In
our main experiments, we conduct the downsampling
method [6] with downsampling factor of 2. Here we also
investigate the impact of different downsampling factor val-
ues. As shown in Tab. 9, when increasing the downsampling
factor, the performance of action recognition drops signifi-
cantly. Though downsampling can protect privacy informa-
tion, they can greatly degrade the utility.

Method HMDB51-VISPR UCF101-VISPR

Action (Acc.↑) Privacy (cMAP↓) Action (Acc.↑) Privacy (cMAP↓)
Downsampling-2× 42.1 61.2 43.1 57.2
Downsampling-4× 33.9 41.4 39.5 50.1
Downsampling-8× 23.5 33.7 27.5 43.1

Table 9. More results with the downsampling method [6].

C. More Details and Analysis about the PGP
scheme

We introduce the PGP scheme in Sec. 3.1 in the main pa-
per. Specifically, when updating the anonymization model
ϕk (at the k-th step) using the gradient descent point (i.e.,
ϕ′
k = ϕk−αgk) will bring the model to the “unsatisfactory”

side of the decision boundary, the PGP scheme facilitates
to maintain the update within the “satisfactory” side while
achieving the same progress in optimizing privacy protec-
tion as gradient descent. Below we provide more details
and analysis about the PGP scheme.

More details in the derivation of the contour line. As



Figure 3. More visualizations of the anonymized data generated by our method on VISPR testing set. Note that, VISPR dataset contains
annotations of various privacy attributes such as face, nudity, and credit card. As shown in the figure, our method can effectively remove
the expected privacy information.

elaborated in Sec. 3.1 in the main paper, the PGP scheme
searches for an alternative point (i.e., ϕk + δi) in the pa-
rameter space that satisfies the condition: the point has the
same privacy loss value as the gradient descent point (i.e.,
Lp(ϕk + δi) = Lp(ϕ

′
k)). To achieve this, PGP solves the

contour line of the approximated privacy loss function to
sample candidate points over it. Here we provide more de-
tails about the derivation of the contour line.

Specifically, based on Taylor expansion, we can approx-
imate the privacy loss Lp(ϕk + δi) as m(δi) (Eq. 2 in the
main paper):
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We can then organize the above Eq. 3 as Eq. 4 (i.e., Eq. 4 in
the main paper) below:
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For cases where there are hj
k = 0. When there exists j

such that hj
k = 0 in the Hessian, to solve Eq. 2, we can first



split the entries of Hk into zeros (i.e., M = {j
∣∣ hj

k = 0})
and non-zeros (i.e., N = {j
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k ̸= 0}). Note that,

M ∪ N = {1, 2, . . . , p} and M ∩ N = ∅. Then, Eq. 2
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Note that, Eq. 6 above describes an elliptic paraboloid in
p-dimensional space.

Analysis on the overlap between Ω and the derived
privacy loss contour line. In the PGP scheme, we approxi-
mate the privacy loss based on Taylor expansion in the local
region Ω around the current point ϕk, and derive the loss
contour line to identify candidate points in the local region.
Here we analyze the overlap between the local region Ω and
the derived privacy loss contour line.

As analyzed in [30, 36], a single gradient descent step
typically results in the update point (in our case denoted
as ϕ′

k = ϕk − αgk) within the valid region Ω of Taylor
approximation, i.e., the magnitude of the gradient update
step αgk is typically very small. Thus, the gradient descent
point ϕ′

k usually stays well within the interior of Ω, and con-
sequently, the loss contour line derived w.r.t. ϕ′

k naturally
shares a significant overlap with the local region Ω. We
also empirically observe that the approximation error (i.e.,
the error between the actual privacy loss reduction of the
candidate points Lp(ϕk) − Lp(ϕk + δi) and the target loss
reduction Lp(ϕk)−Lp(ϕ

′
k)) is below 5%. This also implies

that a non-negligible part of the contour line falls within the
valid region Ω for Taylor approximation.

More details about the sampling. After deriving the
contour line in Eq. 4 and Eq. 6, we sample candidate points
over the contour line in the local region Ω = {δi

∣∣ ∥δi∥ ≤
ε}, which approximately have the same loss value as ϕ′

k. To
further ensure that the candidate points can lead to improved
privacy protection ability, as mentioned in Sec. 3.1 in the
main paper, we then check the actual privacy loss values
of the candidate points and filter out the points that fail to
achieve reduction in privacy loss.

D. More Details about the Training Pipeline
and Algorithm

During the initialization, we compute utility gradients from
the white-box surrogate model, and compute privacy gra-
dients from the privacy evaluation model. We train the
anonymization model by combining the utility gradients
and privacy gradients (following [35]), to maintain the sur-
rogate utility model’s “satisfactory” performance while pro-
tecting privacy. The pre-trained white-box surrogate models
are kept frozen in this process.

After initialization, we use GEP and PGP schemes to
train the anonymization model with feedback (i.e., the fi-
nal label output) from the black-box LMM and privacy gra-
dients obtained from the privacy evaluation model. This
algorithm for this training process is provided in Algo-
righm 1. Following the common pipeline of adversarial
learning [6, 29, 35], when the privacy evaluation model’s
performance (i.e., accuracy of privacy attribute classifica-
tion) drops below the threshold (0.95), we also update the
privacy evaluation model toward stronger ability to clas-
sify the privacy attribute. During the training process, we
randomly store updated parameters as archive points, and
when the privacy loss reduction becomes minimal (less than
1e− 8), we restart from one of the archive points following
[26] to better explore the parameter space.

E. More Details about the Benchmarks and
Metrics

More details about the benchmarks. We evaluate our
framework following [6, 29, 35] on privacy-preserving ac-
tion recognition (PPAR) benchmarks, HMDB51-VISPR
[35] and UCF101-VISPR [35]. Specifically, we follow pre-
vious works [6, 35] to define the privacy attributes as fol-
lows: for HMDB51-VISPR, the privacy attributes are gen-
der, complete face, partial face, skin color, semi-nudity, and
personal relationship; for UCF101-VISPR, the privacy at-
tributes are gender, complete face, partial face, skin color,
semi-nudity, personal relationship, and social relationship.

Besides PPAR benchmark, We also evaluate our frame-
work with VQA task. To perform the “same-dataset” eval-
uation following PPAR benchmark on VQA task, we adopt
the subcategories (“people and everyday life” and “sports
and recreation”) in OK-VQA dataset [23] with images that
are most critical to privacy leakage and annotate the test-
ing images with privacy attributes. Specifically, following
[6, 35], the privacy attributes are gender, complete face, par-
tial face, skin color, semi-nudity, personal relationship, and
social relationship. We asked 3 annotators to review each
image and assign a binary label for each privacy attribute.
The final labels are determined by majority voting of the an-
notations following previous work [14]. The annotated pri-



Algorithm 1 the Proposed PABP Framework

Require: black-box LMM fu, the anonymization model fa with parameters ϕ, initial radius d, learning rate α.
1: ϕ← GEP(ϕ, d).
2: for K iterations do
3: ϕ0 ← ϕ
4: while J(ϕk) = 0 do
5: α′ ← α
6: ϕk+1, α

′ ← PGP(ϕk, α
′)

7: end while
8: end for

9: function GEP(ϕ, d)
10: Initialized ϕ.
11: while J(ϕ) = 0 do ▷ J(ϕ) is defined in Eq. 1 in the main paper.
12: for m sampling points do
13: Sample candidate point ϕi = ϕ+ σi and ∥σi∥ = d.
14: if J(ϕi)=1 then
15: ϕ← ϕi.
16: return ϕ
17: end if
18: end for
19: d← 2d
20: end while
21: end function

22: function PGP(ϕk, α)
23: Compute gradient gk = ∇(Lp(ϕk)) given privacy loss function Lp(ϕk).
24: Obtain privacy gradient descent point ϕ′

k = ϕk − αgk.
25: if J(ϕ′

k) = 1 then
26: return ϕ′

k

27: else
28: Approximate Hessian Hk given Lp(ϕk) and obtain m(δi) (Eq. 2 in the main paper).
29: Solve m(δi) = Lp(ϕ

′
k) (Eq. 4 in the main paper and Eq. 6 in this Supplementary.)

30: for m sampling points do
31: Sample candidate point ϕk + δi from the derived equation, where δi ∈ Ω and Ω = {δi

∣∣ ∥δi∥ ≤ ϵ}.
32: if J(ϕk + δi) = 1 then
33: return ϕk + δi, α
34: end if
35: end for
36: return ϕk,

α
2

37: end if
38: end function

vacy attributes for each image are publicly available here1

and the corresponding images can be downloaded from OK-
VQA dataset2.

Following [6, 29, 35], during training, in HMDB51-
VISPR, the action recognition task is performed on the
training set of HMDB51 dataset [12], while the privacy loss
is obtained using the training set of VISPR dataset [28].

1https://github.com/phoebehxf/okvqa- privacy-
attribute

2https://okvqa.allenai.org

In UCF101-VISPR, during training, the utility task is per-
formed using the training set of the UCF101 dataset [34],
and the privacy protection loss is obtained using the VISPR
training set. For the VQA experiments, following the sim-
ilar pipeline in the PPAR benchmarks, during training, the
VQA task is performed with the OK-VQA training data,
and the privacy loss is obtained using the VISPR training
data.

More details about the evaluation metrics. we fol-
low [6, 13, 29, 35] to evaluate the performance of privacy



protection using a privacy evaluation model (i.e., privacy
attribute classifier) and adopt cMAP as the metric. More
specifically, we follow [6] to adopt ResNet-50 [10] as the
privacy evaluation model, and follow the same evaluation
pipeline as [6] for the performance of privacy protection.
The cMAP is calculated as follows [6]:

cMAP =
1

m

m∑
i=1

TPi

TPi + FPi
, (7)

where m is the number of privacy attribute classes, TPi and
FPi are the numbers of true positives and false positives of
the i-th privacy attribute class. The cMAP metric measures
how well the privacy evaluation model can predict privacy
information from the anonymized data, which reflects the
performance of privacy preservation. A lower cMAP value
indicates greater difficulty in recognizing privacy informa-
tion, i.e., lower privacy leakage.

F. More Details about the Implementation.
More details about the models. Following previous works
[6, 29, 35], we build the anonymization model based on U-
Net [31]. To reduce the number of learnable parameters
for tackling the problem involving the black-box model (as
discussed in [27]), we make small modifications to the im-
plementation of U-Net. Specifically, we implement the con-
volution layers following the lightweight depthwise separa-
ble convolution [4], and reduce the feature channels of the
intermediate features following [21]. This reduces the num-
ber of parameters from 25M to p = 9683. For the privacy
evaluation model (i.e., privacy attribute classifier), we fol-
low [6, 13, 29] to adopt ResNet-50 [10].

More details about the implementation in training. In
the training process, as introduced in Sec. 3.1 in the main
paper, we initialize the anonymization model by adopting
a small white-box surrogate utility model and training the
anonymization model with gradients computed from the
surrogate utility model and the privacy evaluation model.
Here we provide the implementation details for this initial-
ization. For action recognition experiments, we adopt the
action recognition classifier R3D-18 [9] as the white-box
surrogate utility model, which is pre-trained on UCF101
dataset [34] and HMDB51 dataset [12] following previous
PPAR works [6, 29]. For VQA experiments, we adopt Con-
ceptBert [8] as the white-box surrogate utility model, which
is pre-trained on the OK-VQA dataset [23]. We set the ini-
tial radius in GEP as d = 0.05. In both GEP and PGP, the
maximum number of sampled points from the sphere (or the
loss contour line) is set to 15. We show the detailed training
pipeline of the framework and the algorithm for the training
process of the anonymization model in Algorithm 1.

More details about the evaluation. For evaluation of
the LMMs on action recognition, we follow the retrieval-
based evaluation [15] to obtain the action class from the

LMM’s output. We evaluate the LMM’s performance on
VQA following [3, 23].

G. Licenses
We use the VISPR dataset [28] following Creative Com-
mons Attribution-NonCommercial 4.0 International (CC
BY-NC 4.0) License. We use the HMDB51 dataset [12],
UCF101 dataset [34], and OK-VQA dataset [23] following
Creative Commons Attribution 4.0 International (CC BY
4.0) License.

We use GPT-4V [11] following the terms of using Ope-
nAI services, and use Video-LLaVA [17] and LLaVA [19]
following Apache License 2.0.
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