
Supplementary for
Seeing the Trees for the Forest: Rethinking Weakly-Supervised Medical Visual

Grounding

A. Self-enhancement with DAP

The interpretability map Φ shows a reasonable localization
capability as it achieves 33.6% average dice score on MS-
CXR. Furthermore, Φ helps enhance the model by narrow-
ing down the pathological search space for VG. By damp-
ening the influence of background, the model can discover
finer pathological signals, which get dominated without the
initial interpretability map prompting. Fig. 1 shows that our
model further refines the localization ofter Φ narrows down
the search space.
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Figure 1. Results of interpretability map, our DAP, and others.

Fig. 2 (Left) plots the Dice score of our model against Φ
on RSNA. Most points lie above the red line, showing our
model imprives Dice upon the interpretability map, indicat-
ing self-enhancement. Fig. 2 (Right) shows DAP surpasses
baselines even when Φ fails (Dice < 0.3).
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Figure 2. Left: Relationship between the performance of the in-
terpretability map and our DAP. Points above the red line (high-
lighted in orange) indicate self-enhancement cases, where our
DAP further improves the Dice score of interpretability maps.
Right: Avg. Dice on samples grouped by the quality of the in-
terpretability map. Dice of other VG are shown for comparisons.

B. Hyperparameters tuning
In this section, we study the impact of different hyperpa-
rameter settings, including the batch size, learning rate, the
weights of loss objectives, text prompts variety and prompt
depth. We conduct the hyperparamters tuning on 20% of
the MS-CXR [1] dataset.

B.1. Batch Size and Learning Rate
We vary the batch size of {128, 256, 512} and report the
result in Table. 1. It is shown that larger batch size has a
positive impact on the overall performance.

Table 1. Batch size versus performance.

batch size CNR↑ PG↑ Dice↑
128 1.027 0.443 0.340
256 1.038 0.440 0.347
512 1.042 0.449 0.350

We vary the learning rate of {1e−1, 1e−2, 1e−3} and re-
port the result in Table. 2. The optimal learning rate is 1e−3.
We set batch size to 512 and learning rate to 1e−3 for other
experiments.

Table 2. Learning Rate versus performance.

lr CNR↑ PG↑ Dice↑
1e−1 0.917 0.358 0.288
1e−2 1.054 0.425 0.345
1e−3 1.042 0.449 0.350

B.2. Loss weights
We vary the weights of the Disease-aware Global con-
trastive loss Lglb and the local contrastive loss Llcl to eval-
uate their significance. We set their weights to {0.1, 1, 2}
and report the result in Table. 3. It is demonstrated that set-
ting the weights for Lglb to 1 and Llcl to 0.1 achieves the
best overall performance, yielding the highest dice score of



0.350, PG of 0.449, and CNR of 1.042. Notably, increas-
ing the weight for Llcl to 1 or 2 leads to a reduction in the
dice score and slight degradation in PG and CNR, suggest-
ing that overemphasizing localization introduces diminish-
ing returns. Lglb significantly influences segmentation per-
formance, while localization loss has a lesser impact.

Table 3. Loss weights versus performance.

Lglb Llcl CNR↑ PG↑ Dice↑
1 0.1 1.042 0.449 0.350
1 1 1.030 0.445 0.343
1 2 1.036 0.438 0.344
2 0.1 1.036 0.443 0.341
2 1 1.042 0.450 0.344

0.1 1 1.038 0.436 0.343
0.1 2 1.041 0.446 0.345

B.3. Robustness with other interpretability meth-
ods.

Chefer et al.’s [2] method was chosen for its strong track
record in VG tasks and alignment with the bi-modal na-
ture of VLMs, which is often used in previous VG works
in VPT, g, and g++. To assess robustness, we implemented
DAP with different methods on RSNA and COVID datasets
with results in Tab. 4. It shows that GradCAM and Smooth-
Grad closely match the original performance, while LRP
achieves similar scores to Self-EQ (CVPR2024). As such,
DAP generalizes to other interpretability methods but we
empirically found that [2] gives optimal performance.

Table 4. CNR scores of different interpretability methods.

Chefer et al[8] GradCAM SmoothGrad LRP Self-EQ

RSNA 1.630 1.462 1.507 0.973 1.075
COVID 1.018 0.903 0.891 0.612 0.659

B.4. Prompt depth

We investigate the impact of prompting at different layers
within the vision encoder. Specifically, we evaluate prompt-
ing at the pixel space of the original image, the first half of
the encoder, the full encoder, the second half, and exclu-
sively at the last layer. We report the result in Table. 5. The
”last layer” setup achieves the best trade-off between seg-
mentation accuracy and robustness, offering a strong bal-
ance between dice and CNR. In contrast, configurations like
”full” or ”last half” slightly enhance CNR but compromise
dice, underscoring the effectiveness of focusing on deeper
features for balanced performance. In contrast, the ”first
only” and ”first half” configurations underperform.

Table 5. Disease aware prompting layer depth versus performance.

layer CNR↑ PG↑ Dice↑
first layer 1.037 0.443 0.341
first half 1.039 0.442 0.343

full 1.043 0.450 0.343
last half 1.046 0.443 0.344

last layer 1.042 0.449 0.350

B.5. Fixed versus Varied text Prompts
We investigate textual prompting strategies by exploring
one fixed prompt, and multiple paraphrases per disease
class. The settings range from 1 prompt per class to 20
and 50 prompts per class, with results summarized in Ta-
ble. 6. The findings demonstrate that increasing the number
of prompts per class enhances model performance, likely
due to expanded vocabulary exposure, which improves the
robustness of the text model.

Table 6. Number of text prompts per class versus performance.

# prompts CNR↑ PG↑ Dice↑
1 0.991 0.417 0.334
10 1.037 0.443 0.344
20 1.036 0.448 0.349
50 1.042 0.449 0.350

C. Few-shot Supervised finetuning perfor-
mance

We further evaluate the proposed approach in few-shot set-
tings, starting with weakly-supervised training followed by
20-shot fine-tuning using ground truth dense labels. As
shown in Table. 7, our proposed DAP achieves results un-
der weakly-supervised settings that are on par with the 20-
shot fine-tuned performance of competing methods, demon-
strating its efficiency in learning meaningful representations
with minimal supervision for visual grounding.

D. Text prompts construction
We utilize GPT-4o [4] to generate disease-centric descrip-
tions for chest X-ray findings. The model is instructed
to produce 50 distinct prompts for each disease, explicitly
avoiding anatomical location details. The prompt we used
is:

For the disease <disease name>, provide a
sentence to describe it on chest X-rays. Exclude
any reference to anatomical locations and ensure
findings are concise, medically accurate, and re-
flect a professional radiology reporting style.



CNR↑ PG↑ Dice↑
Method Venue weak 20-shot weak 20-shot weak 20-shot

g [6] NIPS22 1.461 1.606 0.284 0.782 0.450 0.512
g++ [5] CVPR23 1.350 1.625 0.467 0.733 0.445 0.456
VPT [3] ICASSP24 1.173 1.599 0.612 0.785 0.468 0.535

DAP Proposed 1.630 1.741 0.747 0.816 0.474 0.551

Table 7. Weakly-supervised and Few-shots finetuning performance on RSNA [7] dataset.
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Figure 3. Dice score (left) and CNR (right) of DAP and Φ against
the ground truth of RSNA dataset under different noise levels,
compared to the strong baseline g++[44].

E. Robustness to flawed Φ

We inject noise into Φ and investigate how DAP degrades as
noise increases. We first consider pixels of Φ with value >
0.3 as important. Then, we flip top-k ∈ {10, 30, 50, 70}%
of important pixels to 0, and retrain the model to find how
good should Φ be to benefit DAP. We conducted exper-
iments on RSNA and plot the result in Fig. 3. DAP’s
performance is indeed correlated with the quality of Φ,
which is lower than g++ when dice(Φ,GT) ≤ 0.3 at k =
50%. Yet, we note that this is artificial scenario. In prac-
tice, Φ exhibits a reasonable localization capability with
0.34/0.42/0.33 dice score on MS-CXR/RSNA/Covid.

F. Qualitative results
We present more qualitative results of our proposed DAP in
Fig. 4 and Fig. 5.
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Figure 4. Qualitative results of DAP on MS-CXR [1] dataset.



Figure 5. More qualitative results of DAP on MS-CXR [1] dataset.
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