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Algorithm 1 DiffGEBD training algorithm

def train_loss(V, T, y_0, p):
"""
V: video [B, T, H, W, 3]
T: diffusion time-step
y_0: ground-truth boundary labels [B, L, 1]
p: CFG probability
"""

# Extract features from backbone network g
F = g(V)

# Extract visual embeddings from the encoder f
E = f(F)

# Random sample for time-step
t = uniform(0, T)

eps = normal(mean=0, std=1)

# Corrupt data
y_crpt = sqrt( alpha_cumprod(t)) * y_0 +

sqrt(1 - alpha_cumprod(t)) * eps

# Classifier-free Guidance by probability p
if uniform(0, 1) < p:

E = zeros like(E)

# Predict with the decoder h
y_hat = h(y_0, E, t)

# Mean squared loss
loss = (y_0 - y_hat)**2
loss = mean(loss)

return loss

alpha cumprod(t): cumulative product of αi, i.e.,
∏t

i=1 αi

In this supplementary material, we present detailed ex-
planations and additional experimental results. Specifically,
we include the training and inference algorithms in Sec. 1,
experimental details in Sec. 2, additional experimental re-
sults in Sec. 3, more example results in Sec. 4, and a discus-
sion in Sec. 5.

1. Algorithms
We present the training and inference algorithms in Alg. 1
and Alg. 2, respectively. During training, both conditional
and unconditional models are jointly trained with probabil-
ity p, enabling classifier-free guidance. During inference,
we iteratively refine the output by balancing the uncondi-
tional and conditional outputs according to the guidance
weight w, obtaining the final output.

2. Experimental Details
2.1. Datasets
Kinetics-GEBD. Kinetics-GEBD [14] is the largest
GEBD dataset, encompassing a wide spectrum of videos.

Algorithm 2 DiffGEBD inference algorithm

def inference(V, T, steps, w):
"""
V: video [B, T, H, W, 3]
T: diffusion time step
steps: the number of inference steps
w: classifier-free guidance weight
"""

# Extract features from backbone network g
F = g(V)

# Extract visual embeddings from the encoder f
E = f(F)

y_t = normal(mean=0, std=1)

# Uniform sample step size
times = reversed(linespace(-1, T, steps))
time_pairs = list(zip(times[:-1], times[1:]))

for t_now, t_next in zip(time_pairs):
# conditional prediction
y hat c = h(y t, E, t now)

# unconditional prediction
y hat u = h(y t, zeros like(E), t now)

# Form the classifier-free guided prediction
y hat = (1 + w) * y hat c - w * y hat u

# Estimate x at t_next
y_t = ddim_step(y_t, y_hat, t_now, t_next)

return y_t

Each boundary is composed of various taxonomy-free
boundaries, including action and object changes. The
dataset includes multiple annotators, with each annotation
providing subjective event boundaries. Each of the train-
ing and validation set contains 20K videos from Kinetics-
400 [5]. In our experiments, we report the results on the
validation set.

TAPOS. The TAPOS dataset [13] comprises 21 distinct
action categories derived from Olympic sports videos. It
consists of 13,094 action instances in the training set and
1,790 instances in the validation set. Each video is anno-
tated with a single annotator, which divides a single action
into multiple sub-actions. Following [14], we adapt TAPOS
for our GEBD task by trimming each action instance with
its action label hidden and conducting experiments on them.

2.2. Implementation details
We train our model using AdamW with a batch size of 2
and a learning rate of 2e-5 in all experiments. In determin-
ing the final boundary predictions, we identify consecutive
predictions that exceed a predefined threshold δ as bound-



Model Diffusion Diversity-aware GEBD Conventional GEBD

F1sym F1p2g F1g2p Diversity F1@0.05

cVAE - 62.7 66.8 59.9 15.2 70.0
DiffGEBD - 73.4 75.2 72.3 20.2 77.5
DiffGEBD ✓ 74.0 75.6 72.9 20.4 78.4

Table 1. Effects of the diffusion process. The diffusion-based
approach consistently outperforms baselines across all metrics.

Model Sampler Diversity-aware GEBD Conventional GEBD

F1sym F1p2g F1g2p Diversity F1@0.05

DiffGEBD DPM-Solver++ 73.8 76.0 72.2 18.0 78.2
DiffGEBD UniPC 73.8 76.1 72.2 17.7 78.4
DiffGEBD DDIM 74.0 75.6 72.9 20.4 78.4

Table 2. Effect of the diffusion sampler.

Model F1sym Div. Train time Inf. time Mem. #param

Temporal Perciever [18] 69.4 14.6 8.7h 0.03s 0.1G 52.2M
SC-Transformer [7] 72.9 18.9 44.7h 0.15s 9.4G 71.6M
BasicGEBD [22] 72.2 18.6 19.9h 0.15s 7.2G 32.2M
EfficientGEBD [22] 72.6 14.9 16.4h 0.15s 6.2G 33.2M

DiffGEBD (4 steps) 73.4 18.5 6.6h 0.16s 7.1G 68.0M
DiffGEBD (8 steps) 73.7 19.4 6.6h 0.19s 7.1G 68.0M
DiffGEBD (32 steps) 74.0 20.4 6.6h 0.36s 7.1G 68.0M

Table 3. Computational cost on Diversity-aware evaluation.
We report the training time and parameters per whole video and
the inference time and memory per frame.

ary candidates. The midpoint of each boundary candidate
sequence is then designated as the final boundary predic-
tion [7, 22]. We set δ to 0.5 for both Kinetics-GEBD [14]
and 0.3 for TAPOS [13] in our experiments.

3. Additional Experimental Results
We present additional experimental results following the
same settings as in the main paper. All experiments were
conducted on the Kinetics-GEBD dataset.

Effect of diffusion process. We evaluate our diffusion-
based approach against two primary baselines at Table 1: a
non-diffusion method training multiple times, and a CVAE-
based [15] model. Our method outperforms these alterna-
tives, as diffusion models are inherently capable of accu-
rately approximating complex data distributions, which led
to our superior performance.

Effect of the different samplers. We adopt DPM-
Solver++ [11] and UniPC [21] samplers for diffusion in-
ference. As in Table 2, the performance remains consistent
across different samplers, showing its generalizability.

Computational cost on the diversity-aware evaluation.
Table 3 compares the computational efficiency of our
method with others reported in Table 1. All results are
obtained using RTX 6000 Ada GPU under the same set-

Method D2
GED (↓)

Temporal Perceiver† [18] 45.5
SC-Transformer† [7] 36.7
BasicGEBD† [22] 37.0
EfficientGEBD† [22] 38.6
DiffGEBD (ours) 34.8

Table 4. Generalized energy distance on Kinetics-GEBD.
† Models with dagger marks are reproduced.
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Figure 1. Effects of CFG weight w on GED.

tings. For deterministic methods, we report the total train-
ing time across five runs. Temporal Perciever [18] uses pre-
extracted features without end-to-end backbone fine-tuning,
which explains its lower Inf. time and memory usage. Com-
pared to EfficientGEBD, our method achieves substantially
lower training time and comparable inference time with 4
sampling steps, while still outperforming it. Although infer-
ence time increases with more steps, it can be reduced via
recent advances, e.g., Flow Matching [10], which we leave
for future work. In terms of memory footprint and model
size, our method maintains similar memory usage to other
baselines using a moderate number of parameters, offering
a good balance between efficiency and capacity.

Generalized energy distance (GED). Additionally, we
employ the Generalized Energy Distance (D2

GED) [1, 12, 17]
on the diversity-aware evaluation. D2

GED measures the dis-
crepancy between the predicted distributions Ŷ and the
ground truth boundary distributions Y :

D2
GED(Ŷ ,Y ) = 2E[d(Ŷ , Y )]−E[d(Ŷ , Ŷ ′)]−E[d(Y, Y ′)],

(1)
where d is a distance metric, Ŷ , Ŷ ′ are independent sam-
ples drawn from the predicted distribution Ŷ , and Y, Y ′ are
independent samples drawn from the ground truth distribu-
tion Y . We adopt d(i, j) = 1 − F1@τ(i, j) to evaluate
boundary matching score, for arbitrary i and j. Here, we
set τ to 0.05. A lower GED score indicates better align-
ment between predicted and ground truth distributions. The
detailed computation is provided in Eq. 2.



Method
Threshold δ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DDM-Net [19] 74.9 75.3 75.7 76.3 76.8 76.0 67.1 43.0 16.7
SC-Transformer† [7] 70.9 76.3 77.6 77.3 76.2 74.1 69.6 60.3 37.0
EfficientGEBD [22] 51.2 70.5 78.3 75.5 65.2 50.4 34.7 20.2 7.9
DiffGEBD(Ours) 78.3 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4

Table 5. Robustness on threshold δ. We report F1@0.05 with
different thresholds on Kinetics-GEBD. †: reproduced from the
official code.

Method Reproduced Paper

Temporal Perceiver† [18] 74.9 74.8
SC-Transformer† [7] 77.4 77.7
BasicGEBD† [22] 76.9 76.8
EfficientGEBD† [22] 78.3 78.3

Table 6. F1@0.05 of conventional evaluation protocol on
Kinetics-GEBD. † Models with dagger marks are reproduced us-
ing official implementations.
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Following the diversity-aware evaluation protocol, we
evaluate our model using D2

GED. As presented in Ta-
ble 4, the results demonstrate that our predicted distribu-
tions closely align with the ground truth boundary distribu-
tions. Figure 1 shows that the CFG weight w increases, the
D2

GED increases, indicating that stronger guidance reduces
the diversity of predictions and leads to larger discrepancy
between predicted and ground truth distributions.

Robustness on threshold δ. In boundary detection, the
final boundary prediction ŷ0 for each frame is thresholded
by δ to determine whether it is classified as a boundary. To
assess the robustness of the predictions, we vary δ from 0.1
to 0.9. As shown in Table 5, DiffGEBD maintains consis-
tently strong performance across different threshold values,
demonstrating the robustness of the predicted boundaries.

Reproduced results of previous methods. For diversity-
aware evaluation protocol, we conduct 5 independent runs
for each model. As shown in Table 6, the average perfor-
mances of the conventional protocol closely match the re-
ported performance in previous methods, validating the re-
producibility.

CFG weight w F1sym F1p2g F1g2p Diversity

0.1 73.45 74.24 73.14 24.64
0.2 73.63 74.60 73.16 23.64
0.3 73.79 74.94 73.17 22.75
0.4 73.87 75.19 73.11 21.88
0.5 73.93 75.42 73.03 21.09
0.6 73.96 75.60 72.92 20.38
0.7 73.96 75.76 72.79 19.73
0.8 73.93 75.87 72.65 19.24
0.9 73.91 75.97 72.53 18.57
1.0 73.85 76.04 72.37 18.07
2.0 73.42 76.42 71.25 14.91
3.0 73.02 76.48 70.49 13.28
4.0 72.73 76.49 69.97 12.31
5.0 72.52 76.48 69.58 11.70
6.0 72.35 76.44 69.32 11.29
7.0 72.21 76.39 69.12 11.02
8.0 72.08 76.34 68.93 10.82
9.0 72.00 76.31 68.80 10.69

10.0 71.91 76.26 68.68 10.60

Table 7. Numerical results of the effect of CFG weight w
(Fig. 4).

NG F1sym F1p2g F1g2p Diversity

1 70.9 73.9 68.8 15.1
2 72.1 74.3 70.6 17.6
3 73.5 75.5 72.1 18.4
4 74.0 75.6 72.9 20.4
5 73.0 74.4 72.4 22.9

Table 8. Numerical results of the effect of number of annota-
tions (Fig. 5).

Numerical results of CFG weight w. Table 7 presents
the complete numerical results in Fig. 4 in the main paper.
While the main paper visualizes these results as plots for
better trend analysis, we provide the exact values here for
reference.

Numerical results of number of annotations. The nu-
merical results of Fig. 5 are presented in Table 8.

Full results on the diversity-aware evaluation. We pro-
vide full results with Rel. Dis. threshold ranging from 0.05
to 0.5 on the diversity-aware evaluation protocol. Table 9
presents the F1sym performance across all thresholds. Dif-
fGEBD outperforms previous methods across all Rel. Dis.
thresholds.

Full results on the conventional evaluation. We provide
full results with Rel. Dis. threshold ranging from 0.05 to
0.5 on the conventional evaluation protocol. Table 10 and



Table 11 show the results of Kinetics-GEBD and TAPOS,
respectively.

4. More Example Results
We provide additional qualitative results in Fig 2. The
model demonstrates robust detection of boundaries with
significant scene changes across all guidance weights.
However, for subtle transitions, such as minor object move-
ments observed at 1.70s (2b), the model becomes less sen-
sitive to these boundaries at higher weights (2c). This sug-
gests that lower guidance weights enable the model to cap-
ture ambiguous boundaries through its stochastic generation
process.

5. Discussion
Limitations and future work. While our diffusion-based
method effectively generates multiple predictions, its iter-
ative process significantly slows down inference. Future
work will address this limitation by adapting methods like
Flow Matching [10] and Consistency Models [16]. These
approaches can achieve high-quality results with a single
sampling step, directly addressing the speed limitations.

Broader impact. To the best of our knowledge, this work
presents the first generative formulation of generic event
boundary detection, along with a novel evaluation frame-
work for multiple predictions scenario. We believe that our
approach opens up new possibilities for for addressing in-
herent human ambiguity in event boundaries and provides a
new paradigm for future research in this direction.



Method
F1sym @ Rel. Dis.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg.

Temporal Perceiver† [18] 69.4 76.9 79.3 80.7 81.6 82.2 82.6 83.0 83.3 83.5 80.2
SC-Transformer† [7] 72.9 80.7 83.1 84.5 85.3 85.9 86.4 86.7 87.0 87.2 84.0
BasicGEBD† [22] 72.2 79.7 82.2 83.6 84.6 85.2 85.6 86.0 86.2 86.5 83.2
EfficientGEBD† [22] 72.6 80.3 82.8 84.3 85.3 86.0 86.5 86.9 87.2 87.5 83.9
DiffGEBD (ours) 74.0 81.8 84.2 85.5 86.4 87.0 87.4 87.8 88.1 88.4 85.1

Table 9. Diversity-aware evaluation on Kinetics-GEBD with Rel.Dis. threshold from 0.05 to 0.5. We report F1sym score varying differ-
ent relative distance thresholds. Bold numbers indicate the best score, while underlined numbers represent the second-best performance.

Method
F1 @ Rel. Dis.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg.

BMN [9] 18.6 20.4 21.3 22.0 22.6 23.0 23.3 23.7 23.9 24.1 22.3
BMN-StartEnd [9] 49.1 58.9 62.7 64.8 66.0 66.8 67.4 67.8 68.1 68.3 64.0
TCN [6] 58.8 65.7 67.9 69.1 69.8 70.3 70.6 70.8 71.0 71.2 68.5
PC [14] 62.5 75.8 80.4 82.9 84.4 85.3 85.9 86.4 86.7 87.0 81.7
SBoCo [4] 73.2 82.7 85.3 87.7 88.2 89.1 89.4 89.9 89.9 90.7 86.6
Temporal Perceiver [18] 74.8 82.8 85.2 86.6 87.4 87.9 88.3 88.7 89.0 89.2 86.0
DDM-Net [19] 76.4 84.3 86.6 88.0 88.7 89.2 89.5 89.8 90.0 90.2 87.3
CVRL [8] 74.3 83.0 85.7 87.2 88.0 88.6 89.0 89.3 89.6 89.8 86.5
LCVS [20] 76.8 84.8 87.2 88.5 89.2 89.6 89.9 90.1 90.3 90.6 87.7
SC-Transformer [7] 77.7 84.9 87.3 88.6 89.5 90.0 90.4 90.7 90.9 91.1 88.1
BasicGEBD [22] 76.8 83.4 85.7 87.1 87.9 88.5 88.8 89.1 89.4 89.6 86.6
EfficientGEBD [22] 78.3 85.1 87.4 88.7 89.6 90.1 90.5 90.8 91.1 91.3 88.3
DyBDet [23] 79.6 85.8 88.0 89.3 90.1 90.7 91.1 91.5 91.7 91.9 89.0
DiffGEBD (ours) 78.4 84.8 86.8 87.9 88.6 89.1 89.4 89.7 89.9 90.1 87.5

Table 10. Comparison with the state of the art on Kinetics-GEBD. We report F1 score varying different relative distance thresholds.
The numbers in boldface indicate the highest score. DiffGEBD shows the competitive performance on overall metrics.

Method
F1 @ Rel. Dis.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg.

ISBA [2] 10.6 17.0 22.7 26.5 29.8 32.6 34.8 36.9 38.2 39.6 30.2
TCN [6] 23.7 31.2 33.1 33.9 34.2 34.4 34.7 34.8 34.8 34.8 33.0
CTM [3] 24.4 31.2 33.6 35.1 36.1 36.9 37.4 38.1 38.3 38.5 35.0
TransParser [13] 23.9 38.1 43.5 47.5 50.0 51.4 52.7 53.4 54.0 54.5 47.4
PC [14] 52.2 59.5 62.8 64.7 66.0 66.6 67.2 67.6 68.0 68.4 64.3
Temporal Perceiver [18] 55.2 66.3 71.3 73.8 75.7 76.5 77.4 77.9 78.4 78.8 73.2
DDM-Net [19] 60.4 68.1 71.5 73.5 74.7 75.3 75.7 76.0 76.3 76.7 72.8
SC-Transformer [7] 61.8 69.4 72.8 74.9 76.1 76.7 77.1 77.4 77.7 78.0 74.2
BasicGEBD [22] 60.0 66.6 - - - 73.1 - - - 74.8 71.0
EfficientGEBD [22] 63.1 70.5 - - - 77.4 - - - 78.6 74.8
DyBDet [23] 62.5 70.1 73.4 75.6 76.7 77.2 77.5 77.9 78.1 78.4 74.7
DiffGEBD (ours) 65.8 71.8 74.1 75.7 76.4 77.0 77.4 77.7 78.0 78.1 75.2

Table 11. Comparison with the state of the art on TAPOS. We report F1 score varying different relative distance thresholds. The
numbers in boldface indicate the highest score. DiffGEBD shows the state-of-the-art performance on overall metrics.



(a) Ground-truth (GT)

(b) DiffGEBD, CFG ! = 0.7

(c) DiffGEBD, CFG ! = 7.0
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Figure 2. Example results on Kinetics-GEBD. The figure illustrates (a) Ground truth annotations, (b) predictions with w = 0.3, and (c)
predictions with w = 7.0.
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