Motion Synthesis with Sparse and Flexible Keyjoint Control

Supplementary Material

In the supplementary materials, we describe the imple-
mentation details (Sec. 1) and present ablation results on
different sampling strategy (Sec. 2). Please refer to the
supplementary video on our project page for additional qual-
itative results.

1. Further Details
1.1. Model Details

We designed our each model using a diffusion framework
based on DDPM [4], incorporating the U-Net architecture
introduced by [6]. The training was conducted with the
AdamW optimizer [7], where we set the learning rate to
1 x 10~* and applied a weight decay of 1 x 10~2. For in-
ference, we utilized classifier-free guidance with a weight
w = 2.5. Additional details on the hyperparameters for both
the network architecture and diffusion process are summa-
rized in Table 1. Both models were trained using a diffusion
process with 50 steps. The key-joint diffusion model is
comparatively smaller in size in contrast to the full-body
completion diffusion model, which consists of a channel
dimension of 128.

Hyperparameter Key-Joint Model ~ Full-Body Model
Learning rate le-4 le-4
Optimizer Adam W Adam W
Weight decay le-2 le-2
Batch size 64 64
Channels dim 128 512
Channel multipliers [2,2,2,2] 12,2,2,2]
Variance scheduler Cosine [8] Cosine [8]
Diffusion steps 50 50
Diffusion variance 8= %ﬁt B = 11737;71/37‘,
EMA weight (3) 0.9999 0.9999
Guidance weight (w) 2.5 2.5

Table 1. Hyperparameters of each model

1.2. Baseline Details

For the baselines OmniControl [10], TLControl [9], Mo-
tionLCM [3], and DNO [5], we utilize the officially released
checkpoints for evaluation. For CondMDI [2], in order to
support arbitrary joint-level control with their strategy, we
train the model using global position representations for all
joints.

1.3. Goal-Driven Motion Synthesize Task

To capture the spatial relationship between body and
target locations, we introduce a body shape encoding.
This encoding is represented as a continuous shape

feature b, which is derived from a set of key mea-
surements. These measurements include joint-to-joint
distances obtained from the T-pose, such as: [root, head],
[left_shoulder, right_shoulder], [shoulder, wrist],
[left_pelvis, right_pelvis], [pelvis, feet]. Additionally,
depth measurements for chest and hip thicknesses are
computed by evaluating the distances between their front
and rear vertices. These measurements collectively form
a compact and continuous representation of the body’s
proportions. In order to model various motion dynamics
within a unified framework, we assign a unique action label
to each task, conditioning the network on these labels.

We evaluate our approach to goal-driven motion synthesis
task by training a unified network that integrates multiple
scenarios. In each scenario, control signals are provided as
an initial pose paired with target control joints at the final
frame. Specifically, reaching target hand positions [1] fo-
cuses on controlling the right-hand position, climbing with
rock constraints [11] involves controlling both hands and
feet, and sitting with hand control [12] requires controlling
both hands at the final frame. Our unified network is trained
to address multiple dynamics and control settings simultane-
ously.

Dataset Description We collect a variety of tasks that re-
quire control over different target joints at the final frame
and involve multiple motion dynamics. For the scenario
of reaching target hand positions, we utilize the dataset
from [1]. Specifically, we extract sequences of reaching mo-
tions and augment them by mirroring the left-hand reaching
motions to the right hand, thus generating a total of 3,138
right-hand reaching sequences. To define the goal position,
we identify the farthest point reached by the hand from its
initial location. In our experimental setup, 2,510 samples are
designated for training. In the case of the climbing with rock
constraints scenario, we leverage the dataset from [11]. We
carefully select sequences that depict the subject detaching
from one climbing rock and securely reaching for another.
This process yields 156 motion samples. For the sitting with
hand control scenario, we use the dataset from [12]. We
extract 160 sequences that begin with the subject in a stable
position and end when they are seated in a chair. To ensure
consistency across all tasks, we standardize the dataset by
aligning the subject’s face direction to the +z axis at the
initial frame and setting the root position at the origin.



2. Ablation Study on Sampling Strategy

We perform a quantitative evaluation of various sampling
strategies for diffusion models. Specifically, we train a
keyjoint trajectory model and a full-body completion model
using 50-step diffusion models and apply both DDPM and
DDIM-based diffusion sampling strategies. The results
demonstrate that our method maintains consistent perfor-
mance even with 5-step diffusion sampling and continues
to outperform other baselines, achieving high precision and
natural motion quality, as supported by Figure 3 of the main

paper.

. Frame Control ~ R-precision . Foot
Sampling gjoee  FPV By Top3)t PV Skating |
- - 0.002 0.000 0.797 9.503 0.000

r=1 0.127 0.019 0.681 9.518 0.071
r=2 0.128 0.019 0.680 9.539 0.070
r=>5 0.148 0.024 0.681 9.554 0.069
DDPM (50) =10  0.171 0.027 0.678 9.402 0.074
r =20 0.195 0.033 0.677 9.575 0.064
r=30  0.224 0.036 0.673 9.674 0.061
r=60  0.263 0.044 0.659 9.627 0.062
r=1 0.136 0.019 0.678 9.559 0.075
r=2 0.141 0.020 0.681 9.574 0.074
r=25 0.158 0.022 0.682 9.599 0.073
DDIM (10) r=10  0.186 0.025 0.675 9.632 0.069
r=20 0222 0.030 0.681 9.644 0.067
r =30 0.254 0.037 0.673 9.621 0.063
r=60  0.297 0.041 0.661 9.615 0.065
r=1 0.127 0.019 0.678 9.528 0.072
r=2 0.140 0.019 0.686 9.573 0.073
r=5 0.164 0.022 0.678 9.582 0.072
DDIM (5) r=10  0.202 0.025 0.674 9.543 0.065
r=20  0.236 0.031 0.665 9.521 0.069
r=30 0338 0.037 0.655 9.356 0.065
r =60 0.658 0.045 0.622 9.147 0.073

Table 2. Quantitative evaluation of various sampling strategies for
diffusion models.

3. Additional Results

3.1. Results on Challenging or Unseen Scenarios

We further conduct experiments using manually specified
control signals in challenging forms (e.g., S-curves or
straight lines), which are unseen and difficult scenarios.
These results highlight the robustness and generalization
capability of our method (Figure 1).

3.2. Results on More Expressive Prompts

We provide results for more expressive and complex prompts
in Figure 2. Our method generates rich, detailed, and vivid
motions, demonstrating its ability to capture expressive tex-
tual descriptions while faithfully adhering to sparse control
signals such as “flying like an airplane,” “extending arms,”

“walks backward,” and “walking up the stairs”.

“A person raises the toolbox
with both hands.”

“A person walks”

“A person puts hands on the
armrest”

“A person walks forward.”

o+~

Figure 1. Qualitative results on manually specified challenging
control signals, such as S-curves and straight paths. Our method
successfully follows the intended trajectories, demonstrating strong
generalization to unseen and difficult motion constraints.

“The person holds the rail while
walking up the stairs.”

“The person is flying like a
o airplane.”

“A man energetically walks
backwards in a clockwise circle,
then turns sharply, and continues
backpedalling.”

“A person bends and walks
forward, gradually extending
their arms as they go.”

Figure 2. Motion generation results for expressive prompts. Our
method produces vivid and diverse motions in response to complex
textual descriptions while respecting the given sparse control sig-
nals.
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