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In the supplementary materials, we elaborate the imple-
mentation details for our SceneMI (Sec. 1), additional analy-
sis with experiments on varying keyframe selection strategy,
runtime analysis, and an ablation study on hyperparameter
settings with discussing limitations (Sec. 2). Furthermore,
we introduce a detailed Video-based Human-Scene Interac-
tion Reconstruction pipeline (Sec. 3), where SceneMI plays
a crucial role in enhancing realism and physical plausibil-
ity in HSI reconstruction. For additional qualitative results,
please refer to the supplementary video on our project page.

1. Further Details
1.1. Implementation Details
We implemented our model using a DDPM based diffusion
framework [5], leveraging the U-Net architecture proposed
by [9] with the AdamW optimizer [12] with a learning rate
of 1e−4 and a weight decay of 1e−2. For classifier-free
guidance at inference, we set the guidance weight w =
2.5. More hyperparameters of the architecture and diffusion
process are organized in Table 1.

Hyperparameter Value

Batch size 256
Learning rate 1e-4

Optimizer Adam W
Weight decay 1e-2
Channels dim 256

Channel multipliers [2, 2, 2, 2]
Variance scheduler Cosine [14]

Diffusion steps 1000
Diffusion variance β̃ = 1−αt−1

1−αt
βt

EMA weight (β) 0.9999
Guidance weight (w) 2.5

Table 1. Hyperparameters of the Model

1.2. Baseline Details
We compare our approach against a diverse range of
state-of-the-art motion synthesis methods, including scene-

agnostic motion generation (MDM [17] and StableMoFu-
sion [7]), motion in-betweening (OmniControl [19] and
CondMDI [2]), and scene-aware motion synthesis (SceneD-
iffuser [6] and Wang et al. [18]). To ensure a fair comparison
of scene-aware motion in-betweening tasks, we adapt their
original models accordingly.

For scene agnostic works (MDM [17], StableMoFu-
sion [7], OmniControl [19], and CondMDI [2]), we adapt
them by replacing their text encoders with a Vision Trans-
former (ViT)-based global scene encoder to incorporate
scene conditions. For diffusion-based motion synthesis
methods (MDM [17], StableMoFusion [7], and SceneD-
iffuser [6]), we modify their inference process to support
motion in-betweening by imputing joint positions at every
diffusion step. Additionally, we adapt their motion repre-
sentations to incorporate a global root representation, en-
abling keyframe-based in-betweening via imputation sam-
pling. Across all baselines, we use only static keyframe
poses—such as joint position information—to generate in-
termediate motions.

2. Additional Analysis
2.1. Robustness to Varying Keyframe Selection

Strategy
Our motion in-betweening module experiences random
keyframes with mask m during training, it maintains strong
performance with arbitrary keyframes m∗ at the inference.
We show that our method consistently achieves robust re-
sults with keyframes chosen at arbitrary indices, even in
noisy conditions. Table 2 demonstrates the robustness of
our method across different keyframe selection strategies,
showing its ability to handle noise effectively.

2.2. Time Cost
We report the inference time comparison with baselines
in Table 3 for obtaining SMPL parameters. For realistic
character animation, acquiring actual motion parameters is
essential. Our method directly predicts these parameters,
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Keyframe Selection FID ↓ Jerk (m/s3) ↓ MJPE All (m) ↓
Uniform (r = 1) 0.122 0.197 0.0117
Uniform (r = 3) 0.118 0.198 0.0129
Uniform (r = 15) 0.125 0.196 0.0153
Uniform (r = 60) 0.123 0.198 0.0233

Random (p = 0.2) 0.124 0.199 0.0138
Random (p = 0.5) 0.123 0.199 0.0124

Table 2. Quantitative evaluation of diverse keyframe selection
strategies on noisy TRUMANS test set with a fixed noise level
l = 1. We select keyframes using different strategies, such as at a
uniform interval r or with a random probability p, including start
and end frames. Our method shows robustness performance from
highly sparse to dense keyframes, regardless of keyframe density
or selection.

whereas baselines require a post-processing with an addi-
tional optimization-based fitting process from predicted joint
positions. This offers a faster pipeline for obtaining actual
motion compared to baselines.

Method MDM [17] OmniControl [19] CondMDI [2] Ours

Time (s) 119.4 ± 2.1 283.7 ± 3.8 162.4 ± 3.5 39.6 ± 0.8

Table 3. Time required to obtain actual parameters for motion.

2.3. Ablation on Hyper Parameters

We evaluate different configurations of global scene dimen-
sions, the number of BPS points, and body shape condi-
tioning within a sparse keyframe interval setup (r = 60) to
validate our hyperparameter choices in Table 4.

We design body shape encoding, b, that in-
cludes key joint-to-joint distances from T-pose:
[root, head], [left shoulder, right shoulder],
[shoulder, wrist], [left pelvis, right pelvis], and
[pelvis, feet]. Two thickness values: distances between
the frontmost and rearmost vertices of the chest region
and the hip region. These measurements provide a body
shape abstraction b as a compact shape representation in a
continuous domain. Furthermore, our main experiments are
conducted on diverse body shapes, including five samples
from the TRUMANS dataset and real-world shapes from
GIMO and Video2Animation. Although the design of the
body shape encoding is not our primary contribution, it
significantly enhances in-betweening accuracy and reduces
penetration artifacts.

Configurations FID ↓ Jerk
(m/s3) ↓

MJPE All
(m) ↓

Collision Frame
Ratio ↓

Pene. Max
(m) ↓

Scene 96x48x96 0.130 0.201 0.027 0.117 0.046
BPS 256 0.124 0.196 0.025 0.114 0.045
w/o Body Shape 0.122 0.193 0.038 0.121 0.047
Ours 0.123 0.194 0.023 0.113 0.043

Table 4. Ablation study on our hyperparmeters setting.

3. Video-based Human-Scene Interaction Re-
construction

In this section, we present a Human-Scene Interaction Re-
construction pipeline, where our SceneMI module plays a
core component. The goal is to reconstruct realistic, physi-
cally plausible human animations and scene geometry from
monocular RGB video sequences that capture both scene
and human movements.

The pipeline comprises two primary stages: the initial
stage and the refinement stage. In the initial stage, we extract
a rough estimate of both human motion and scene geometry
in a metric scale. In the refinement stage, we enhance the
physical plausibility and naturalness of the motion using the
reconstructed scene geometry and our SceneMI module. The
following sections detail the challenges and methodologies
for each stage.

3.1. Initial Stage
Our framework takes as input an RGB video sequence of M
frames with 30 FPS, denoted as {Ii}Mi=1.

Camera Parameter Estimation From the first frame of
the video sequence, we estimate intrinsic camera parameters
using [8]. These parameters are crucial for positioning 3D
human meshes or back-projecting depth estimation results
in subsequent steps.

Human Mesh Recovery (HMR) We utilize 4D Hu-
mans [3] to obtain human mesh parameters for each frame.
The obtained parameters are used to construct SMPL model-
based human meshes, denoted as {Xi}Mi=1. These meshes
are then placed in 3D space using the previously estimated
camera parameters and root translations. Since the SMPL
model is defined in metric scale [11], this process provides
an initial metric-scale geometry reference.

Metric-Scale Depth Estimation with HMR To recover
the complete 3D scene geometry, we employ a pre-trained
depth estimation network [21] to produce initial depth maps
Dinit,i for each frame. These depth maps, while precisely
capturing relative depth relationships, lack accurate metric-
scale representation. To resolve this, we estimate a global
scale s and offset factor o that transform the Dinit,i into
metric-scale:

Di = s ·Dinit,i + o, ∀i = 1, 2, . . . ,M

To determine the optimal transformation parameters s and
o, we leverage the metric-scale human meshes (Xi) obtained
in the previous stage as geometric references. For each frame
i, we sample the visible vertices from the human mesh in
camera space, denoted as V (Xi). We also backproject the
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transformed depth map Di into 3D space, selecting only the
region corresponding to human segmentation in image Ii, to
obtain point clouds denoted as PX(Di). The alignment be-
tween these point sets is achieved by minimizing the chamfer
distance between two pointsets:

L =

M∑
i=1

d(V (Xi), PX(Di))

where d represents the Chamfer distance [16] between two
point sets. Optimization ensures that the transformed depth
maps align with the metric-scale geometry of human models.

However, depth estimation results are often uncertain,
particularly at object boundaries. To address this, we esti-
mate the uncertainty of depth values and retain only reliable
information. We apply color jittering transformations (hue
transformations) [13] to the input image and obtain multiple
depth values for each pixel. We calculate uncertainty fol-
lowing [10] and only valid depth values are preserved for
subsequent steps.

Reconstruct Individual Objects To reconstruct the 3D
scene, we adopt a strategy that restores individual objects
from the video as 3D meshes Mj and places them accu-
rately within the 3D space. Our process begins by obtaining
instance segmentation [1] results from the provided video
frames. However, due to occlusions caused by foreground
objects or human movement, these initial segmentation re-
sults are often incomplete or imprecise. We address this lim-
itation by employing an image completion algorithm [15] to
refine the segmentation and generate a more complete image
for each object. Given these refined segmentation results, we
then apply an Image-to-3D reconstruction method [20, 22]
to obtain initial 3D object meshes Mj with textures for each
instance.

Object Scale and Pose Refinement Individually recon-
structed objects Mj exhibit inaccuracies in scale and pose.
Empirically, we observe that reconstructed objects align well
with the gravity, but require refinement in translations tj ,
rotations rj , and scales sj . We address these issues by opti-
mizing it using metric-scale depth maps D.

For each object mesh Mj , we sample visible surface
points in camera space, denoted as V (Mj). Then, these
points are transformed using a learnable variable tj , rj , and
sj . We also extract corresponding points from the metric-
scale depth map D using the object’s segmentation mask,
denoted as Pj(D). After initializing the object’s translation
tj using the centroid of Pj(D), we optimize the object’s
scale sj , rotations rj , and translation tj by minimizing:

L = d(V (Mj), Pj(D))

where d represents the Chamfer distance between two point
sets.

Collision

Jitter

Figure 1. Results from the initial stage of Video2Animation. Start-
ing from the input video [4] (top left), we reconstruct the scene
geometry (top right) and the corresponding human motion (bottom)
in metric scale.

3.2. Refinement Stage
Following the initial stage of motion and scene geometry
reconstruction in a metric scale, several challenges remain
in motion estimation, including potential scene collisions,
motion jittering, and inconsistencies inherent to image-based
motion extraction algorithms, as shown in Figure 1. We
address these issues by leveraging a 3D motion prior by
applying our SceneMI module.

Keyframe Optimization We optimize keyframes at reg-
ular 5-frame intervals, concentrating on root translation γ
where motion estimation errors predominantly occur. The
optimization leverages five complementary loss functions:

Regularization Loss constraints large deviations from
the initial guess, ensuring optimization stability. Contact
Loss estimates contact vertices [23] from human meshes
Xi, encouraging precise alignment with scene geometry
while penalizing non-contact vertex penetrations. Temporal
Smoothing Loss minimizes consecutive root translation dif-
ferences, encouraging smooth transitions between frames.
Depth Matching Loss aligns visible human mesh points with
metric-scale depth estimations using Chamfer distance mini-
mization.

Applying SceneMI Following keyframe optimization,
we progressively refine overall motion sequences using
SceneMI. We sample one keyframe from every three op-
timized keyframes, corresponding to a 15-frame interval in
the original video. By leveraging scene geometry and the
poses derived from keyframes, we reconstruct the final ani-
mation that integrates geometric constraints, enhancing both
realism and physical plausibility, as shown in Figure 2.

As SceneMI limits motion sequence synthesis to length
N = 121, we employ an autoregressive strategy to synthe-
size continuous and natural human motion across extended
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sequences. For keyframes representing arbitrary motion
lengths, we divide sequences into N -length segments with
v frame overlaps, where v = 60. We iteratively synthesize
motion by using the final v frames of a prior episode as
initial keyframes for the subsequent segment. After synthe-
sizing the first motion sequence, we utilize its last v frames
as keyframes for the start of the subsequent segment. For the
remaining N − v frames, motion is synthesized based on the
corresponding keyframes from the current segment.

This progressive approach enables motion synthesis
across long sequences, overcoming SceneMI’s length con-
straints while maintaining scene awareness and motion con-
sistency. This autoregressive approach allows applicability
to real-world videos with arbitrary-length inputs.

Figure 2. The final results from the Video2Animation pipeline
demonstrate the reconstruction of 3D human-scene animation from
monocular video inputs. By incorporating SceneMI with the ob-
tained scene information and optimized keyframes, we reconstruct
natural and physically plausible motions. For additional results,
please refer to the supplementary video.

4. Additional Results
4.1. Evaluation across Multiple Seeds
Since our model is generative, we repeat our major experi-
ments in Table 1 and Table 3 in the main paper across 20 dif-
ferent random seeds. We report their mean value, with 95%
statistical confidence interval in Table 5. The observed vari-
ance is marginal, demonstrating the stability of our method.

Configurations FID ↓ Jerk
(m/s3) ↓ MJPE (m) ↓ Collision Ratio ↓

Tab.1 (ours) 0.123 0.194 0.023 0.113
+ 20 runs 0.123±0.001 0.193±0.002 0.023±0.001 0.114±0.002

Tab.3 (ours) 0.118 0.198 0.012 0.108
+ 20 runs 0.118±0.001 0.198±0.003 0.012±0.001 0.109±0.002

Table 5. Evaluation across multiple random seeds. We report the
mean and 95% confidence intervals for key metrics over 20 runs.

4.2. Integration with Frame-Based HSI
To further explore the applicability of our method, we inte-
grate our module with a semantic keyframe generation ap-
proach. Specifically, we generated multiple sparse keyframes
(colored in blue) using COINS [24] to provide semantic cues
in various scenes, then applied our model to synthesize the
complete motion sequence. The Figure 3 show our method

generates coherent and plausible motions despite the seman-
tic sparsity of the input keyframes.

Figure 3. Integration with semantically generated keyframes.
Our model produces plausible motions from sparse, semantic
keyframes.

4.3. Long-Term Keyframe Interval
We also additionally provide an example with a 4-second
keyframe interval, where only the start and end frames are
given. As shown in Figure 4, the synthesized motion suc-
cessfully navigates complex scenes with large obstacles,
demonstrating our model successfully handles a long motion
sequence that navigates around large obstacles.

Figure 4. Result with a long-term keyframe interval. The model
synthesizes long-horizon motion while avoiding large obstacles.

4.4. Discussion of Failure Cases
While our method generalizes well to unseen configura-
tions and scene geometries beyond the training data, we
acknowledge certain failure cases. First, failure can occur
in rare human-scene interaction patterns such as “squeez-
ing through a narrow passage,” where the required motion
rarely observed in training. Second, performance degrades
in real-world scenes with highly complex or noisy geometric
reconstructions, where subtle spatial constraints may not
be fully captured by scene encoding. Figure 5 illustrates
representative failure cases.

collision

deviate from 
the keyframe

Figure 5. Failure cases. (Left) Unseen interaction pattern (e.g.,
squeezing through narrow space). (Right) Real-world scene with
noisy or complex geometry.
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