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Supplementary Material

8. Mathematical Background

In this section we provide a detailed analysis of the mathe-
matical formulation of our methods, as described in Sec. 4.
Specifically, we analyze the constraints in Egs. (10) and (11)
and the solution to the minimization problem in Eq. (12).

8.1. Null Space Conditions

The singular values of a matrix A € R"*" are defined as
the square roots of the eigenvalues of the symmetric matrix
AT A € R™ ™, Alternatively, the singular vectors of A can
be defined as follows:

vy = argmax ||Av||z, (15)
vil2=1
v; = argmax |AV]2, @>2. (16)
lIvil2=1
vlspan{viy,...,vi_1}

The singular values of A are then given by:

The null space of A, denoted as Null(A), is defined as the
span of unit vectors whose corresponding singular values
are zero. From Eq. (16), there are n singular vectors (as
there are n orthogonal vectors in R™). If » = rank(A), the
rank-nullity theorem implies that the nullity, i.e., the dimen-
sion of Null(A), is n — r. Therefore, from Eq. (16), the null
space of A is given by:

Null(A4) = span{v,41,..., Vn } . (18)

Moreover, if vi,...,v, are the singular vectors corre-
sponding to the non-zero singular values of A4, o1(A) >
-+« > 0.(A) > 0 (assuming that A # 0), then the span of
these vectors is orthogonal to the null space of A. Formally:

Null(A4)* = span{vy,...,v,}. (19)

Since vy, ..., Vv, are an orthonormal basis of R", and the
subspaces in Eqgs. (18) and (19) are complementary, every
feature vector v € R™ can be written as:

v=v,+v,, v, € Nul(4), v, € Null(4)~. (20)

This decomposition indicates that every vector v € R™ con-
sists of a component v,, in the null space of A and a com-
ponent v, orthogonal to Null(A). This makes the condition
d € Null(W;'—ls)J- in Egs. (10) to (12) necessary to avoid a
trivial solution to the minimization problem. For instance,

if this condition were not enforced, then the solution would
be zero, corresponding to any & € Null(W /). If we only
enforced 6 ¢ Null(W],), then the minimum would not

exist but the infimum would be zero:

inf  |W].8]=0. Q1)
8:(|8][>ds,
S¢Null(W )

Eq. (21) holds because d can be decomposed into compo-
nents &,, € Null(A) and §, € Null(A)*, where J,, can be
arbitrarily larger than d,,, making || W [, 8| arbitrarily small
(but not zero).

8.2. Least Singular Value Solution

From Eqgs. (16) and (19), it follows that:

I\H\\linl |AV]2 = 0,(4) =: omin(4).  (22)
vENufl?A)L

This equation highlights that the smallest non-zero singular
value of A corresponds to the minimum norm of Av over
all unit vectors orthogonal to Null(A).

The singular value decomposition (SVD) encodes infor-
mation about the singular values and singular vectors of
a given matrix in a structured way. Namely, any matrix
A € R™*" can be factorized as follows:

A=UxVT, (23)

where:

* ¥ € R™*™ is a diagonal rectangular matrix whose entries
are the singular values of A in descending order;

e U € R™™ and V € R™ " are orthogonal matrices,
whose columns correspond to the left and right singular
vectors of A, respectively.

In particular, the SVD of AT is given by:

AT =vxTUT, (24)

which implies that A and AT have the same non-zero sin-
gular values. Combining this with Equation (22), we get

Hnlr‘liril AT V2 = omin(A), (25)
veNuuZ(AT)L

which justifies Equation (12).



8.3. Singular Value Gradients

Lewis and Sendov [26] demonstrate that for a convex and
absolutely symmetric function f : R — (—o00,+00], the
gradient of the corresponding function f oo is differentiable
at the matrix X if and only if f is differentiable at o (X),
where o(X) are the singular values of X. The gradient is
given by:

V(foo)(X)=UDiag(Vf (s (X)) V',  (26)

where X = UDiag (X)VT. If (f; 0 0)(C) = s{ o(X)
is a function that selects the ¢-th singular value, such
that (s;)r = d;x, Where J;; is the Kronecker delta, then
Vf (o (X)) = s;. Therefore, the gradient of the i-th singu-
lar value is:

Voi(X) =uv] 27
where u; and v; are the left and right singular vectors cor-
responding to the i-th singular value o;(X). Furthermore,
if the singular values are ordered, then o, = o(X); and
Omin = 0(X),, where r is the rank of X, hence:

VO min(X) = WninVhin (28)

vUmaz (X) = um(lIV'y—;az . (29)

Combining Eq. (28) into the LSV and CN regularizers
(Egs. (13) and (14)), we obtain the gradients:

chls (0’71 ) = _072 uminv—r (30)

min min man >’

Vi, (k) = (Uminumawvlaz - Umaa:ummvnT@in)/U?nin .

€2y
9. Training Regime

We follow the original training regime for each baseline
method and their corresponding FEVER-OQD variants.

VOS [7]: we train all our VOS for classification models
for 100 epochs with a batch size of 128 32 x 32 images
(CIFAR-10 and CIFAR-100 [20] datasets). Outlier synthe-
sis started in epoch 40 in all experiments. Following Du
et al. [7], we sample 10,000 instances per category in the
feature space and choose the instance with the least log
probability as the outlier. We use an initial learning rate of
0.1 with cosine annealing and stochastic gradient descent
(SGD) with 5 x 10~* weight decay and 0.9 momentum for
all experiments. A loss weight of 0.1 is used for the un-
certainty loss. With regards to VOS for detection models,
we follow the same outlier synthesis scheme as in classifi-
cation. We use a batch size of 16 images with varying mini-
mum width from 480 to 800 pixels, and train for 18, 000 it-
erations, corresponding to around 17.4 epochs for the PAS-
CAL VOC [10] dataset. An initial learning rate of 0.02 is

used for all VOS detection models, decaying by a factor
of 10 after 12,000 epochs and again after 16,000 epochs.
Similarly to classification, loss weight of 0.1 us used for
the uncertainty loss. All VOS training was carried out us-
ing a single GPU per experiment. VOS classification mod-
els were trained on NVIDIA GeForce RTX 2080 Ti GPUs,
while VOS detection models were trained on NVIDIA RTX
A6000 GPUs.

FFS [21]: FFS models follow a similar training regime as
VOS models. The only difference for FFS models is that the
outliers are obtained as the least likely out of 200 samples
from the normalizing flow feature space, following Kumar
et al. [21]. We use the same 0.1 loss weight for the un-
certainty loss as in VOS, and 1 x 104 loss weight for the
normalizing flow loss, for both classification and detection
models. Additionally, we implement FFS for classification
since the original implementation is only for object classifi-
cation.

Dream-OOD [8]: we train Dream-OOD in CIFAR-100
for 100 epochs with a batch size of 160 in-distribution im-
ages and 160 OOD images (for a combined 320 epochs
per batch). We use SGD with an initial learning rate of
0.1, cosine annealing, 5 x 10~* weight decay and 0.9 mo-
mentum. Regarding Imagenet-100, we use a ResNet-34
[14] that is pretrained solely on image classification only
for 100 epochs. We train for OOD detection for 20 fur-
ther epochs, using a batch size of 20 in-distribution and
20 OOD images, initial learning rate of 0.001, 5 x 10~*
weight decay and 0.9 momentum. Following Du et al. [8],
we use an energy loss weight of 2.5 for CIFAR-100 experi-
ments and 1.0 for Imagenet-100 experiments. Dream-OOD
for CIFAR-10 models were trained with single NVIDIA
GeForce RTX 2080 Ti GPU while the Imagenet-100 models
were trained with single NVIDIA TESLA v100 GPUs. We
use the ResNet-34 pretrained model for Imagenet-100 and
the generated outliers in the pixel space for both CIFAR-100
and Imagenet-100 provided by Du et al. [8] at https: //
github.com/deeplearning-wisc/dream-ood.

10. Null Space Projection

Figs. 6 and 7 show the feature projections of VOS and
FEVER-OOD VOS models using UMAP and t-SNE pro-
jections, respectively. Both models are for CIFAR-10 as in-
distribution data, with the best model of FEVER-OOD VOS
being shown, corresponding to an 96-NSR and A sy = 1.0
(Tab. 1). Specifically, Figs. 6a and 7a show the projec-
tion of in-distribution vs. OOD examples. The projections
of the feature space of both methods show that the OOD
samples are pushed to different regions outside, with de-
fined clusters for in-distribution classes (colored according
to their ground-truth class). Nonetheless, the free energy


https://github.com/deeplearning-wisc/dream-ood
https://github.com/deeplearning-wisc/dream-ood
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Figure 6. Feature Space UMAP Projection for models trained on CIFAR-10. Top row corresponds to the VOS [7] model while the
bottom shows the FEVER-OOD VOS (Ours) projections. (a) In-distribution vs OOD feature space projection, where X markers represent
data from OOD datasets, (b) Free Energy visualization of the feature space, and (c) different important directions, including Null Space
directions, the LSV direction and a random direction.
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Figure 7. Feature Space t-SNE Projection for models trained on CIFAR-10. Top row corresponds to the VOS [7] model while the bottom
shows the FEVER-OOD VOS (Ours) projections. (a) In-distribution vs OOD feature space projection, where X markers represent data from
OOD datasets, (b) Free Energy visualization of the feature space, and (c) different important directions, including Null Space directions,
the LSV direction and a random direction.
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Figure 8. Free energy change by its distance to the centroid of the feature vectors of an in-distribution category along different directions.

(a) VOS vs. (b) FEVER-OOD VOS.
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Figure 9. Free energy change for varying the contribution of the Null Space (NS) component and the Null Space Perpendicular (NSP)

component. (a) VOS vs. (b) FEVER-OOD VOS.

score for these samples shown in Figs. 6b and 7b exhibits
a more uniform distribution of the free energy for OOD
samples when using FEVER-OOD, providing a visualiza-
tion of why our technique works better. Additionally, the
different scales of the energy values between both models
indicates a higher separability between in-distribution and
OOD. Finally, Figs. 6¢ and 7c show the feature distribution
of the class 0 and some virtually generated features along
some directions. Specifically, we generate features away
from the centroid of the in-distribution feature vectors along
three null space directions (gray), the LSV direction (green)
and a random direction (blue). As described in Sec. 4.1,

the energy of the features in the null space direction does
not change, which is reflected in Figs. 6¢ and 7c, where all
the null space features have the same energy. Additionally,
Sec. 4.2 shows that the direction with least change in energy
corresponds to the LSV direction. In this sense, because
our FEVER-OOD VOS (Figs. 6¢ and 7c) uses the LSVR,
the energy plots show greater energy variation in the LSV
direction (green line) compared to the baseline VOS.

Fig. 8 shows the change in energy across these directions
with respect to the distance to the in-distribution centre,
where it is seen that the change in energy in the LSV direc-
tion is significantly larger with FEVER-OOD. Finally, with



Table 5. CIFAR-10 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

OOD Datasets
Method FEVER-OOD Textures SHVN Places365 LSUN iSUN Avg ID Acc
r-NSR  Arsv  Acow FPRO5 AUROC FPRI5 AUROC FPRO5 AUROC FPRI5 AUROC FPRI5 AUROC FPR95 AUROC

VoS - - - 50.05:570  86.79+128  39.15:1052  91.73:288  40.88:175  89.54x0.69 8.22:1.02  98.36:020  30.01:444  94.31s084  33.66:221  92.15:059  94.83x0.16
- 1.0 - 55.58+635  86.71«235  43.00:3.16  92.09:094  38.78:251  91.14s056  7.36:159  98.46:032 21231695  96.23s1.17  33.19:320 92.92:085  94.660.18
- - 0.1 50.80306  85.39:079  30.78x295  94.04:058  41.60:140  88.77x0.74 8.50+0.82 98.30:0.10  30.91x454  93.41s168  32.52x125  91.98:046  94.69:0.16
96 - - 50.27+232  89.42:049  36.25:1404  93.93:200  39.51:168  91.42:052  6.98:091 98.63x0.18 2295732 96.02+132  31.19:321  93.89:047  94.69:0.16
96 1.0 - 40.86:485  92.12:105  41.92:1611  93.20:261  35.69:220  92.61:057  4.95:149  98.93:024  17.68:526  97.04:085  28.22:418  94.78:085  94.74x0.17
96 - 0.1 43.60:332  90.86x071  48.71:1123  91.99:195  38.47:136  91.34x054 5.90+1.66 98.76:026  18.27+540  96.81x083  30.99:347  93.95:056  94.65:0.12
64 - - 46.97+135  89.57x064  37.79:683  93.45:100  36.70:151  91.84x050  6.60:091 98.66:0.14  22.29+318  96.00x068  30.07:1.71  93.91x038  94.76:0.07
64 1.0 - 44.415539  91.26c120  34.68:1093  94.39s172 35.85:256 92421053 568057  98.75:0.13  24.03:591  96.02:095  28.93i386  94.57:066  94.75i0.13
64 - 0.001  48.54:450 89.40:138  45.51x964 91.41:242  38.34:174  91.39:049 6.99:0.87 98.64:0.13  21.29+428  96.28x072  32.13:3.01  93.42:074  94.78:0.10
32 - - 43.89:314  90.66:081  50.86:1043  91.48+174  37.95:095  91.73:043 5.60:074  98.84:012  24.57x602  95.55:133  32.57:209  93.65:060 94.75:0.14
32 0.001 - 46.53:377  89.67«100  27.841947  95.29s108  37.33x163  91.77:039 5.65:077  98.82:0.11  24.09:677  95.68x135  28.29:333  94.25:055  94.68+0.07
32 - 0.1 48.25:547  89.32:130 2531215 95.71:041  39.49:275  91.23:083 7.09£137 98.63:024  26.50+7.71  95.00:2.19  29.33:129  93.98:044  94.84:0.17
10 - - 53.20:390  88.97x073  35.62:966  94.41s128 4573620  89.73x160  11.72:339  97.93:046  41.80:1435  92.51:305  37.61x400  92.71x097 91.952232
10 0.01 - 72.61:2280 72.98s1881 76.83:2426  73.1321906  72.09:2470 70.86:17.48 49.57:4132  78.19:2302  59.87:3288 76.66:21.76 66.19:28.10  74.37:19.94  58.10:39.34
10 - 0.001  67.02:1739  80.09x15.10  58.11x2443 83.56:1690 58.03:21.22 81.80:1594 34.06:3325 87.46:1875 56.56+2429 83.65:17.01 54.76:2282 83.31:1667 74.13+32.08

FFS - - - 52.86:449  83.47x167 38.67:1121  89.74s519  44.65:120  87.47x077 6.59x092  98.67:0.17  31.34x188 9324097  34.82:205  90.52:098  94.69:0.15
- 0.001 50.74s398  84.93x075  32.25:1216  92.97s360  42.99+230  88.30x1.10 5.76x1.23 98.82:027  28.16:645  94.18x198  31.98:310  91.84x128  94.73:0.12
- - 1.0 50.08:3.86  84.92:185  30.91s6.19  92.77:233  45.69:259  87.16x0.75 6.22:0.65 98.73:0.11  26.60:3.64  94.80:064  31.90:251  91.67:094  94.85:020
96 - - 48.67+288  88.70:048  40.64:1936  89.89s015  41.38x120  90.22:088  4.84x0s81 99.02:0.13  27.30x608  94.99:1.18  32.57:452  92.56:203  94.71:0.13
96 1.0 - 48.11s505  89.84x151  40.65:1547  93.32:306 3637228 92.29:0.60 5.22+135 98.89s0.18  24.84:1008  95.82:168  31.04s505  94.03:106  94.71:0.08
96 - 0.001 47.24:261  89.51x088 39.25:1020 93.84x133  40.44:332  90.83x097 4.44:0381 99.08:0.12 2527608  95.71:098  31.33:3.13  93.80:060 94.84:0.14
64 - - 45.03:288  89.96:101 3796268  93.18+153  41.70z151  90.49:057 4.64x030  99.03:004  22.78:567  96.02:097 3042209  93.73x060  94.82:0.07
64 1.0 - 51.70s567  88.81x109  33.02:1400  94.60s230  39.05:373  91.53:123 5.5641.95 98.841030  26.63751  95.65:1.12  31.19s432  93.89:060  94.6810.08
64 - 0.001 47.16:600 88.88:208  25.18:952  95.65:162  43.52:275  89.96x0.67 5.01x0.84 99.03:0.13  28.45:877  94.79:171  29.86:334  93.66:079  94.79:0.19
32 - - 46.75:349  89.61x140 31772873  94.44s135 4151338 90.72:102  4.93:111 99.04:0.16  28.92:1123  94.49:204  30.78:370  93.66:095  94.79:0.18
32 0.001 - 49.79s305  88.29:093  31.60s1607 94.14s353  41.25:184  90.58:070 5.00:128  98.99:019 28241675  95.06+122  31.18s521  93.41s103  94.74x0.17
32 - 0.01 51.83563  87.07x191  33.13x668  94.35:140  46.81:295  88.85:1.02 5.37+1.64 98.95:028  31.78:893  94.56:152  33.78i389  92.75:101  94.70:0.19
10 - - 54.72:580  84.77x323  45.70:1295  91.49+227  41.52+327  89.51x131 8.21s359  98.33x067  28.58:775  94.30x182 35751526 91.68:138  94.54x0.17
10 0.001 - 62.04:1973  79.12:1468  55.1122780 81.97s1688 54.23:2347  81.49:1584  26.86136.64 88.65:1933  49.99:2802  84.06+1728 49.65:2560 83.06:16.58 77.7643388
10 - 0.001  66.08:1834  75.24z13.01  62.20:29.49  80.75:1621  56.53:22.11  79.83x1502  31.00:3471  87.73z1888 51.68x2486 83.40:1674 53.50:24.12  81.39x1582  77.62:3381

regards to the component decomposition in Eq. (20), Fig. 9
shows the energy change with respect to an in-distribution
feature vector when moving in directions with varying con-
tribution of the components of the null space and perpen-
dicular to the null space. Since the null space component
does not change the free energy score, all the changes are in
the vertical direction, showing a greater change when using
FEVER-OOD vs. the baseline methods.

11. Ablation Studies

Tabs. 5 to 7 show more extensive results of different com-
binations of NSR, LSVR and CNR in the FEVER-OOD
framework. The best values for A;gy and Aoy are re-
ported. In general, it is observed that using LSVR improves
the detection of the baseline and NSR versions, while CNR
usually decreases the AUROC. It is also seen that NSR
also increases AUROC and decreases FPR95. Nonetheless,
excessive NSR in feature-outlier synthesis methods(e.g.,
VOS using 10-NSR for CIFAR-10) can negatively impact
OOD detection performance. On the other hand, Dream-
OOD models achieve better results with significant NSR,
although LSVR and CNR seem to only be beneficial for
Imagenet-100.

Figs. 10 to 14 show the ablation studies of varying Arsy
and Aoy in Eqgs. (13) and (14) for different classifica-
tion methods and in-distribution datasets. Fig. 10 shows
the results for FEVER-OOD VOS using CIFAR-10 as in-
distribution, where values corresponding toa A\( sy, cn} =
0 refer to no LSV or CN regularisation. In general, LSV
regularisation gives better results than CN regularisation. It

is observed that larger values of A\;gy leads to better per-
formance for none or few NSR (VOS, VOS-96-NSR and
VOS-64-NSR). The same trend is observed for FEVER-
OOD FFS in Fig. 11. It is also observed that the mod-
els become unstable when using a large NSR, where the
extreme case of {VOS,FFS}-10-NSR fails for both regu-
larizer at relative small loss weights. This effect could be
caused because regualrizing the least singular value (either
for LSVR or CNR) affects all the directions of the feature
space since there is no null space. This causes makes the
model not able to learn the in-distribution task, failing also
for OOD detection. Additionally, all NSR models fail for
Acenv = 1.0.

FEVER-OOD VOS and FFS ablations for the CIFAR-
100 as in-distribution are shown in Figs. 12 and 13. Similar
as with CIFAR-10, LSV regularisation is more stable and
leads to better results than CN regularisation. In both OOD
models (VOS and FFS), it is observed that the best results
are achieved with 114-NSR and an intermediate value for
Ansv. These results indicate that for OOD models based
in outlier generation in the feature space, some reduction
of the null space and a moderate regularizer is benefical.
However, the complete elimination of the null space and
LSV (or CN) regularization might impose a huge prior in
the last layer, making it difficult to learn the in-distribution
task. Finally, Fig. 14 shows the ablations for FEVER-OOD
Dream-OOD with CIFAR-100 as in-distribution. Here it
is observed that NSR by itself leads to better results, sug-
gesting that there might be a significant portion of gener-
ated outliers in with large components in the null space



Table 6. CIFAR-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD

OOD Datasets

Method Textures SHVN Places365 LSUN iSUN Avg ID Acc
7-NSR  Arsv  Aew FPR95 AUROC FPR95 AUROC FPR9S AUROC FPR9S AUROC FPR9S AUROC FPR9S AUROC
VoS - - - 81.24:211  76.01x080  76.09:651  83.18x350  80.53:146  76.25:078  37.86:406  93.21s068  79.34:160 76.43:144 7101123  81.02:040  76.04:022
- 0.1 - 82.87:1.11  76.49:094  73.35:296  84.57:1.53  80.36:1.16  76.89:079  40.05:374  92.83:046 74.28:403  80.25:334  70.18:087  82.21x056  76.01:0.16
- - 0.01 8251264 76.04x191  73.67:3.10 8531124  80.18:108  76.59:023  41.08:327  92.75:063 80.83:437 73.79s551  71.65:096  80.90:1.11  76.20:0.11
114 - - 80.63:096  79.06:1.06  81.92:749 8325414  80.23:060  77.02:034  28.61x160  9520:031  76.87624  79.18:379  69.65:294  82.74s165  75.40:031
114 0.01 - 80.02:275  78.73:1.83  83.45:250  82.07:1.36  78.41:096 77.71x093  28.90:361  95.11:x058 72.07:007 80.55:470  68.57:228  82.83:091  75.72:0.6
114 - 0.001 79.37:187  79.19:1.03  86.96:1.93  79.25:215  78.20:048  77.91:040  26.05:238  95.70:034 72.95:435 81.12:245  68.71:118  82.63:083  75.44:020
100 - - 80.47:232 7821114 79.10:742 8339391 79.19:104  77.23:050  28.99:250  95.15:039  75.51s668 79.63:370  68.65:129  82.72:057  75.54:0.19
100 0.001 - 82.60+8.93 72911154  88.71x723  72.19:11.75 82.94:856 71.84x1094 43.40:2832 86.02:18.01 81.55:900 72.74x1158 T75.84x12.12  75.14x1258  60.57:29.78
100 - - - - - - - - - - - - - -
FFS - - - 82.87x139  75.541093  76.32:617  84.83:236 81.14x1.09  76.27x074  36.27:491  93.54x103 82.83:298 74.29:308  71.89:164  80.89:1.11  76.04x0.11
- 0.01 - 80.95:134  76.53:070  83.12:559  81.61x292  80.19:084  76.58:049 3293405  94.20x051 79.05:506  77.28:323 71252211 81.24s072  76.27:028
- - 0.001 80.27:276  76.78x1.53  78.57:732  82.57+295 80.40:1.09 76.40:053  32.91x490 94.06:1.02  80.71:790 74.49s557  70.57:241  80.86:088  76.05:0.16
114 - - 80.99:136  78.17+083  83.70:7.11  80.78s509  80.24:079  77.02:045  25.36:240  95.73x040 76.10:685 79.87:314  69.28:195  82.31x127  75.60:023
114 0.001 - 79.26:267  78.16:150  74.28:7.13 8537320 79.45:085 77.25:061  24.10:142  9594:017  73.61:582  80.61:249  66.14:191  83.47:098  75.45:037
114 - 0.001 81.77:181 76.87+1.76  82.61x7.99  78.78+621  80.14x1.05 77.08:082  26.15:191  95.52:027 75.69:7.73  78.84x369  69.27:x169  81.42:096  75.14:025
100 - - 77.69:297  78.62:102  77.84:062 83.40s352 80.41:072  76.58:035  21.91:095  96.25:0.11  79.60:606  75.79s517  67.49:203  82.13:085  75.48:028
100 0.001 - 8473780  70.68:1041  86.40:794  T4.77:1247  83.15:850 71.57x1079  39.78:3019  86.59:1830 82.75:898  72.08:1135 75.36:1236  75.14x1257  60.52:2976
100 - - - - - - - - - - - - - -
Dream-OOD - - - 62.201.02  83.841038  73.05:1.92  84.56:021  77.95:197  79.43:0.17  39.90:201  92.87x0.44 1.70z0.11 99.58+004  50.96:1.44  88.06x060  75.61:0.19
- 0.01 - 58451227  86.042041  68.75 184  87.65:030 77.45:211 78591020  15.45:257  97.24:009  1.55:003  99.63:045  44.33:348  89.83s012  75.87:023
- - 0.001  57.4+188  86.28x032  77.75:1.11  85.13:041 78.6:123  78.73:0.15 27.2:177 95.01x0.42 1.55:008  99.57+0.07 48.5:1.54 88.94:043  76.32:0.14
256 - - 60.00:321  85.42:079  67.50:247  85.84:066  75.90:r.10  79.57:043 19.85:1.05  96.74067 1.00:002  99.78:006  44.85:272  89.47x0242  77.01:0.12
256 0.001 - 54.25:213  86.18:086  82.60:224  81.70:091  71.20:133  81.23:061  23.45:131  95.87x0.41 1.05:002  99.69:005  46.51:099  88.93:0.14  76.40:030
256 - 1 60.05:256  84.52:011  61.75:203  88.30:040  78.15:272  76.60:082  34.80:1.09  93.18x039 150014 99.69:0.10  47.25:165  88.46:068  77.49:0.15
128 - - 52.55:195  87.44x024  73.95:146  80.05:053  71.9:248  81.17:023 17.7:0.91 97.07+0.13 1.3:0.05 99.73z0.16 43482222 89.09:x067  76.72x121
128 0.1 - 56.45:239  87.73s101  67.45:112  87.53:044  78.45:246  77.24x061 29.6:173  94.81:040  1.95:0.10 99.5:0.10  46.78:272  89.36:083  76.21:035
128 - 0.01  56.05:238  86.35:0.79 83.1£1.95 80.75+064  75.95:253  79.81x037 23.5:098 95.66:030  1.45:012  99.65:002  48.01:154  88.44x055  76.35:027
100 - - 57.55+248  86.8+0.44 54.45:3.02  88.69:059  75.8:121 78.88:0.69  24.45:157  95.86:0.52 1.620.07 99.65:021 4277210  89.98:015  76.41:032
100 0.001 - 8261473 62.38:223  90.9:333 60.9+1.52 844372 69391227  67.05:130  72.8+1.90 5.8:0385 97.81x049  66.15:1.79  72.66+1.17  31.7624.15
100 - - - - - - - - - - - - - -
Table 7. ImageNet-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).
FEVER-OOD ‘ ‘ OOD Datasets
Method iNaturalist Places365 SUN Textures Avg ID Acc
r-NSR  Apsv  Aew FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Dream-OOD - - - 23981208 95.94:026 41.75:1.72  92.48:0.12  40.85:1.13  92.76:009 50.73:085 86.21:029 39.33:+1.08  91.84:0.12 87.76x0.19
- 0.01 - 59.91+3.09 90.89:048 66.26+2.17 88.12:047 74.26:1.52 84.53:033 60.56:121 83.91:042 65.25:150 86.87x025 87.85:0.11
- - 0.001 59.71x353  90.97:070 65.01x1.90 88.39:045 73.93:1.58 84.69:049 60.51:146 84.01:x051 64.79+1.60 87.01:045 87.77x0.13
256 - - 23.84x173  95.80:030 44.35:1.71  92.142030 42.92x198 92.46:033 44.38:181 88.60:054 38.87x129 92.25:023 87.57x024
256 0.01 - 24.02:148  95.75:026 44.09:1.87  92.02:027 43.36:153 92.30:030 44.55:138 88.67:039 39.00x1.05 92.18:024  87.54:0.24
256 - 0.001 24.42:143  95.73:030 44.98:224 91.98:036 43.88x1.63 92.21x027 44.76:1.16 88.62:057 39.51x072 92.13:x018 87.63x0.18
128 - - 23.96:293 9591:038 43.73x250 92.25:033 43.441260 92.39:041 42.38:164 89.40:033 38.38x221 92.49:024 87.53:0.12
128 0.01 - 23461254  95.93:036 43.37x147 92.19:022 42.42:160 92.44:029 41.86:1.00 89.48:027 37.78x145 92.51:022 87.60:0.11
128 - 0.001 24.55:247 95.87:030 44.12:203 92.20:026 43.89x221 92.40:033 42.53:138 89.48:040 38.77+176 92.49:023 87.49x0.11
100 - - 23.13£135  96.00=021 42.49:230 92.37:037 41.62+237 92.69:031 41.88+1.11  89.34x023 37.28x140 92.60:0.18  87.44x0.07
100 0.01 - 22.24:081  96.16:0.14  41.08:303 92.59:044 40.39:x284 92.91:040 42.31:097 89.30:037 36.50:1.67 92.74:021 87.42:0.15
100 - 0.001 23.26:1.71  96.03z026 43.09:248 92.40:029 41.91x3.05 92.71:040 43.49:058 89.13x042 37.94x1.51 92.57:017 87.580.11

of the feature space. Dream-OOD follows a similar pat-
ter as the other models for CIFAR-100, suggesting that the
analysis holds for different OOD approaches. As shown in
Tabs. 8 to 10, our energy-based method consistently outper-
forms non-energy-based approaches on most OOD datasets,
achieving a lower FPR and a higher AUROC.

12. Qualitative Results

Additional qualitative examples for object-level OOD de-
tection using VOS [7] and FFS [21] models trained with
and without FEVER-OOD with PASCAL VOC as in-
distribution are shown in Fig. 15 for Openlmages [22] as
0OOD, and in Fig. 16 fos MS-COCO [28] as OOD.

13. Limitations and Potential Negative Impact

This section discusses some limitations and potential nega-
tive impact of FEVER-OOD, identifying the following:
* FEVER-OOD does not entirely avoid the null space vul-

nerabilities. While we reduce the size of it, there might
be some anomalies with large components in the feature
space.

* Careful fine tuning is needed in some instances, specially
when reducing the null space significantly. We did not
identify any condition to estimate the regularizer weight
a priori.

* While our analysis show a large change in Energy for
far anomalies (OOD samples), we did not test the per-
formance of FEVER-OOD in this cases.

Finally, our work might have some potential negative im-
pact. For instance, the exploration of these vulnerabilities
might allow for tailored generated outliers that fool (in an
adversarial sense) models based on free energy OOD detec-
tion. Additionally, we trained several models with different
in-distribution datasets to perform the ablation studies, hav-
ing a negative environmental effect due to the large power
consumption for GPU training for such extensive studies.
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Figure 10. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for VOS, using CIFAR-10 as in-distribution (ID).
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Figure 11. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for FFS, using CIFAR-10 as in-distribution (ID).
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Figure 12. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for VOS, using CIFAR-100 as in-distribution (ID).
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Figure 13. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for FFS, using CIFAR-100 as in-distribution (ID).
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Figure 14. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for Dream-OOD, using CIFAR-100 as in-distribution

(ID).



Table 8. CIFAR-10 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

OOD Datasets
Non-energy
based method Texture SVHN Place365 LSUN iSUN Avg
ID Acc
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
ViM [41] 24.35 95.20 24.95 95.36 44.70 90.71 18.80 96.63 29.25 95.10 28.41 94.60 94.21
ODIN [27] 56.40 86.21 20.93 95.55 63.04 86.57 7.26 98.53 33.17 94.65 36.16 92.30 94.21

Softmax [15] 66.45 88.50 59.66 91.25 62.46 88.64 4521 93.80 54.57 92.12 57.67 90.86 94.21
GradNorm[17]  71.66 80.79 80.86 81.41 80.71 72.57 53.87 88.39 60.32 88.00 69.49 82.23 94.21
KNN [38] 27.57 94.71 24.53 95.96 50.90 89.14 25.29 95.69 25.55 95.26 30.77 94.15 94.21
NPOS [39] 8.39 94.67 5.61 97.64 18.57 91.35 4.08 97.52 14.13 94.92 10.16 95.22 93.86

Table 9. CIFAR-100 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

OOD Datasets

Non-energy
based method Texture SVHN Place365 LSUN iSUN Avg
ID Acc
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
ViM [41] 86.00 71.95 54.30 88.85 84.70 74.64 57.15 88.17 56.65 87.13 67.76 82.15 73.12
ODIN [27] 85.75 73.17 89.50 76.13 41.50 91.60 74.70 83.93 90.20 68.27 76.33 78.62 73.12

Softmax [15] 86.45 71.32 85.30 72.41 73.40 81.09 85.55 74.00 88.55 68.59 83.85 73.48 73.12
GradNorm[17]  96.20 52.17 91.05 67.13 55.72 86.09 97.80 4421 89.71 58.23 86.10 61.57 73.12
KNN [38] 88.00 67.19 66.38 83.76 79.17 71.91 70.96 83.71 77.83 78.85 76.47 77.08 73.12
NPOS [39] 33.07 92.86 17.98 96.43 80.41 73.74 28.90 92.99 43.50 89.56 40.77 89.12 73.78

Table 10. ImageNet-100 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

OOD Datasets
Non-energy
based method iNaturalist Place365 SUN Textures Avg
ID Acc
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
ViM [41] 72.40 84.88 76.20 81.54 73.80 83.99 22.20 95.63 61.15 86.51 84.16
ODIN [27] 53.00 89.52 70.40 82.77 66.90 85.01 48.40 89.19 59.67 86.62 84.16

Softmax [15] 76.30 82.20 81.90 77.54 82.70 78.35 75.30 80.01 79.05 79.52 84.16
GradNorm[17]  50.82 84.86 68.27 74.46 65.77 77.11 40.48 88.17 56.33 81.15 84.16
KNN [38] 56.96 86.98 64.54 83.68 63.04 85.37 15.83 96.24 50.09 88.07 84.16
NPOS [39] 53.84 86.52 59.66 83.50 53.54 87.99 8.98 98.13 44.00 89.04 85.37
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Figure 15. Additional visualization of detected objects on the OOD images (from Openlmages [22]) by free energy-based OOD (VOS)
[7], free energy-based OOD (FFS) [21] and FEVER-OOD (our approach). The in-distribution is PASCAL VOC [10] dataset. Blue: OOD

objects detected and mis-classified as being in-distribution. Green: the same OOD objects correctly detected as OOD by FEVER-OOD
(ours).
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Figure 16. Additional visualization of detected objects on the OOD images (from MS-COCO [28]) by free energy-based OOD (VOS)
[7], free energy-based OOD (FFS) [21] and FEVER-OOD (our approach). The in-distribution is PASCAL VOC [10] dataset. Blue: OOD

objects detected and mis-classified as being in-distribution. Green: the same OOD objects correctly detected as OOD by FEVER-OOD
(ours).



