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8. Mathematical Background
In this section we provide a detailed analysis of the mathe-
matical formulation of our methods, as described in Sec. 4.
Specifically, we analyze the constraints in Eqs. (10) and (11)
and the solution to the minimization problem in Eq. (12).

8.1. Null Space Conditions
The singular values of a matrix A ∈ Rm×n are defined as
the square roots of the eigenvalues of the symmetric matrix
A⊤A ∈ Rn×n. Alternatively, the singular vectors of A can
be defined as follows:

v1 = argmax
∥v∥2=1

∥Av∥2 , (15)

vi = argmax
∥v∥2=1

v⊥span{v1,...,vi−1}

∥Av∥2, i ≥ 2 . (16)

The singular values of A are then given by:

σi(A) = ∥Avi∥2 . (17)

The null space of A, denoted as Null(A), is defined as the
span of unit vectors whose corresponding singular values
are zero. From Eq. (16), there are n singular vectors (as
there are n orthogonal vectors in Rn). If r = rank(A), the
rank-nullity theorem implies that the nullity, i.e., the dimen-
sion of Null(A), is n−r. Therefore, from Eq. (16), the null
space of A is given by:

Null(A) = span{vr+1, ...,vn} . (18)

Moreover, if v1, . . . ,vr are the singular vectors corre-
sponding to the non-zero singular values of A, σ1(A) ≥
· · · ≥ σr(A) > 0 (assuming that A ̸= 0), then the span of
these vectors is orthogonal to the null space ofA. Formally:

Null(A)⊥ = span{v1, . . . ,vr} . (19)

Since v1, . . . ,vn are an orthonormal basis of Rn, and the
subspaces in Eqs. (18) and (19) are complementary, every
feature vector ν ∈ Rn can be written as:

ν = νn + νa , νn ∈ Null(A) , νa ∈ Null(A)⊥ . (20)

This decomposition indicates that every vector ν ∈ Rn con-
sists of a component νn in the null space of A and a com-
ponent νa orthogonal to Null(A). This makes the condition
δ ∈ Null(W⊤

cls)
⊥ in Eqs. (10) to (12) necessary to avoid a

trivial solution to the minimization problem. For instance,

if this condition were not enforced, then the solution would
be zero, corresponding to any δ ∈ Null(W⊤

cls). If we only
enforced δ /∈ Null(W⊤

cls), then the minimum would not
exist but the infimum would be zero:

inf
δ:∥δ∥≥db,

δ/∈Null(W⊤
cls)

∥W⊤
clsδ∥ = 0 . (21)

Eq. (21) holds because δ can be decomposed into compo-
nents δn ∈ Null(A) and δa ∈ Null(A)⊥, where δn can be
arbitrarily larger than δa, making ∥W⊤

clsδ∥ arbitrarily small
(but not zero).

8.2. Least Singular Value Solution

From Eqs. (16) and (19), it follows that:

min
∥v∥2=1

v∈Null(A)⊥

∥Av∥2 = σr(A) =: σmin(A). (22)

This equation highlights that the smallest non-zero singular
value of A corresponds to the minimum norm of Av over
all unit vectors orthogonal to Null(A).

The singular value decomposition (SVD) encodes infor-
mation about the singular values and singular vectors of
a given matrix in a structured way. Namely, any matrix
A ∈ Rm×n can be factorized as follows:

A = UΣV ⊤ , (23)

where:
• Σ ∈ Rm×n is a diagonal rectangular matrix whose entries

are the singular values of A in descending order;
• U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices,

whose columns correspond to the left and right singular
vectors of A, respectively.

In particular, the SVD of A⊤ is given by:

A⊤ = V Σ⊤U⊤ , (24)

which implies that A and A⊤ have the same non-zero sin-
gular values. Combining this with Equation (22), we get

min
∥v∥2=1

v∈Null(A⊤)⊥

∥A⊤v∥2 = σmin(A) , (25)

which justifies Equation (12).



8.3. Singular Value Gradients
Lewis and Sendov [26] demonstrate that for a convex and
absolutely symmetric function f : R → (−∞,+∞], the
gradient of the corresponding function f ◦σ is differentiable
at the matrix X if and only if f is differentiable at σ(X),
where σ(X) are the singular values of X . The gradient is
given by:

∇(f ◦ σ)(X) = UDiag (∇f (σ (X)))V ⊤ , (26)

where X = UDiag (X)V ⊤. If (fi ◦ σ)(C) = s⊤i σ(X)
is a function that selects the i-th singular value, such
that (si)k = δik, where δik is the Kronecker delta, then
∇f (σ (X)) = si. Therefore, the gradient of the i-th singu-
lar value is:

∇σi(X) = uiv
⊤
i , (27)

where ui and vi are the left and right singular vectors cor-
responding to the i-th singular value σi(X). Furthermore,
if the singular values are ordered, then σmax = σ(X)1 and
σmin = σ(X)r, where r is the rank of X , hence:

∇σmin(X) = uminv
⊤
min (28)

∇σmax (X) = umaxv
⊤
max . (29)

Combining Eq. (28) into the LSV and CN regularizers
(Eqs. (13) and (14)), we obtain the gradients:

∇Wcls
(σ−1

min) = −σ−2
minuminv

⊤
min , (30)

∇Wcls
(κ) = (σminumaxv

⊤
max − σmaxuminv

⊤
min)/σ

2
min .

(31)

9. Training Regime
We follow the original training regime for each baseline
method and their corresponding FEVER-OOD variants.

VOS [7]: we train all our VOS for classification models
for 100 epochs with a batch size of 128 32 × 32 images
(CIFAR-10 and CIFAR-100 [20] datasets). Outlier synthe-
sis started in epoch 40 in all experiments. Following Du
et al. [7], we sample 10, 000 instances per category in the
feature space and choose the instance with the least log
probability as the outlier. We use an initial learning rate of
0.1 with cosine annealing and stochastic gradient descent
(SGD) with 5× 10−4 weight decay and 0.9 momentum for
all experiments. A loss weight of 0.1 is used for the un-
certainty loss. With regards to VOS for detection models,
we follow the same outlier synthesis scheme as in classifi-
cation. We use a batch size of 16 images with varying mini-
mum width from 480 to 800 pixels, and train for 18, 000 it-
erations, corresponding to around 17.4 epochs for the PAS-
CAL VOC [10] dataset. An initial learning rate of 0.02 is

used for all VOS detection models, decaying by a factor
of 10 after 12,000 epochs and again after 16,000 epochs.
Similarly to classification, loss weight of 0.1 us used for
the uncertainty loss. All VOS training was carried out us-
ing a single GPU per experiment. VOS classification mod-
els were trained on NVIDIA GeForce RTX 2080 Ti GPUs,
while VOS detection models were trained on NVIDIA RTX
A6000 GPUs.

FFS [21]: FFS models follow a similar training regime as
VOS models. The only difference for FFS models is that the
outliers are obtained as the least likely out of 200 samples
from the normalizing flow feature space, following Kumar
et al. [21]. We use the same 0.1 loss weight for the un-
certainty loss as in VOS, and 1 × 10−4 loss weight for the
normalizing flow loss, for both classification and detection
models. Additionally, we implement FFS for classification
since the original implementation is only for object classifi-
cation.

Dream-OOD [8]: we train Dream-OOD in CIFAR-100
for 100 epochs with a batch size of 160 in-distribution im-
ages and 160 OOD images (for a combined 320 epochs
per batch). We use SGD with an initial learning rate of
0.1, cosine annealing, 5 × 10−4 weight decay and 0.9 mo-
mentum. Regarding Imagenet-100, we use a ResNet-34
[14] that is pretrained solely on image classification only
for 100 epochs. We train for OOD detection for 20 fur-
ther epochs, using a batch size of 20 in-distribution and
20 OOD images, initial learning rate of 0.001, 5 × 10−4

weight decay and 0.9 momentum. Following Du et al. [8],
we use an energy loss weight of 2.5 for CIFAR-100 experi-
ments and 1.0 for Imagenet-100 experiments. Dream-OOD
for CIFAR-10 models were trained with single NVIDIA
GeForce RTX 2080 Ti GPU while the Imagenet-100 models
were trained with single NVIDIA TESLA v100 GPUs. We
use the ResNet-34 pretrained model for Imagenet-100 and
the generated outliers in the pixel space for both CIfAR-100
and Imagenet-100 provided by Du et al. [8] at https://
github.com/deeplearning-wisc/dream-ood.

10. Null Space Projection
Figs. 6 and 7 show the feature projections of VOS and
FEVER-OOD VOS models using UMAP and t-SNE pro-
jections, respectively. Both models are for CIFAR-10 as in-
distribution data, with the best model of FEVER-OOD VOS
being shown, corresponding to an 96-NSR and λLSV = 1.0
(Tab. 1). Specifically, Figs. 6a and 7a show the projec-
tion of in-distribution vs. OOD examples. The projections
of the feature space of both methods show that the OOD
samples are pushed to different regions outside, with de-
fined clusters for in-distribution classes (colored according
to their ground-truth class). Nonetheless, the free energy

https://github.com/deeplearning-wisc/dream-ood
https://github.com/deeplearning-wisc/dream-ood


(a) (b) (c)
Figure 6. Feature Space UMAP Projection for models trained on CIFAR-10. Top row corresponds to the VOS [7] model while the
bottom shows the FEVER-OOD VOS (Ours) projections. (a) In-distribution vs OOD feature space projection, where × markers represent
data from OOD datasets, (b) Free Energy visualization of the feature space, and (c) different important directions, including Null Space
directions, the LSV direction and a random direction.

(a) (b) (c)
Figure 7. Feature Space t-SNE Projection for models trained on CIFAR-10. Top row corresponds to the VOS [7] model while the bottom
shows the FEVER-OOD VOS (Ours) projections. (a) In-distribution vs OOD feature space projection, where × markers represent data from
OOD datasets, (b) Free Energy visualization of the feature space, and (c) different important directions, including Null Space directions,
the LSV direction and a random direction.



(a) VOS (b) FEVER-VOS

Figure 8. Free energy change by its distance to the centroid of the feature vectors of an in-distribution category along different directions.
(a) VOS vs. (b) FEVER-OOD VOS.

(a) VOS (b) FEVER-VOS

Figure 9. Free energy change for varying the contribution of the Null Space (NS) component and the Null Space Perpendicular (NSP)
component. (a) VOS vs. (b) FEVER-OOD VOS.

score for these samples shown in Figs. 6b and 7b exhibits
a more uniform distribution of the free energy for OOD
samples when using FEVER-OOD, providing a visualiza-
tion of why our technique works better. Additionally, the
different scales of the energy values between both models
indicates a higher separability between in-distribution and
OOD. Finally, Figs. 6c and 7c show the feature distribution
of the class 0 and some virtually generated features along
some directions. Specifically, we generate features away
from the centroid of the in-distribution feature vectors along
three null space directions (gray), the LSV direction (green)
and a random direction (blue). As described in Sec. 4.1,

the energy of the features in the null space direction does
not change, which is reflected in Figs. 6c and 7c, where all
the null space features have the same energy. Additionally,
Sec. 4.2 shows that the direction with least change in energy
corresponds to the LSV direction. In this sense, because
our FEVER-OOD VOS (Figs. 6c and 7c) uses the LSVR,
the energy plots show greater energy variation in the LSV
direction (green line) compared to the baseline VOS.

Fig. 8 shows the change in energy across these directions
with respect to the distance to the in-distribution centre,
where it is seen that the change in energy in the LSV direc-
tion is significantly larger with FEVER-OOD. Finally, with



Table 5. CIFAR-10 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD
OOD Datasets

Textures SHVN Places365 LSUN iSUN AvgMethod
r-NSR λLSV λCN FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

VOS - - - 50.05±5.70 86.79±1.28 39.15±10.52 91.73±2.88 40.88±1.75 89.54±0.69 8.22±1.02 98.36±0.20 30.01±4.44 94.31±0.84 33.66±2.21 92.15±0.59 94.83±0.16

- 1.0 - 55.58±6.35 86.71±2.35 43.00±3.16 92.09±0.94 38.78±2.51 91.14±0.56 7.36±1.59 98.46±0.32 21.23±6.95 96.23±1.17 33.19±3.20 92.92±0.85 94.66±0.18

- - 0.1 50.80±3.06 85.39±0.79 30.78±2.95 94.04±0.58 41.60±1.40 88.77±0.74 8.50±0.82 98.30±0.10 30.91±4.54 93.41±1.68 32.52±1.25 91.98±0.46 94.69±0.16

96 - - 50.27±2.32 89.42±0.49 36.25±14.04 93.93±2.00 39.51±1.68 91.42±0.52 6.98±0.91 98.63±0.18 22.95±7.32 96.02±1.32 31.19±3.21 93.89±0.47 94.69±0.16

96 1.0 - 40.86±4.83 92.12±1.05 41.92±16.11 93.20±2.61 35.69±2.29 92.61±0.57 4.95±1.49 98.93±0.24 17.68±5.26 97.04±0.85 28.22±4.18 94.78±0.85 94.74±0.17

96 - 0.1 43.60±3.32 90.86±0.71 48.71±11.23 91.99±1.95 38.47±1.36 91.34±0.54 5.90±1.66 98.76±0.26 18.27±5.40 96.81±0.83 30.99±3.47 93.95±0.56 94.65±0.12

64 - - 46.97±1.35 89.57±0.64 37.79±6.83 93.45±1.00 36.70±1.51 91.84±0.50 6.60±0.91 98.66±0.14 22.29±3.18 96.00±0.68 30.07±1.71 93.91±0.38 94.76±0.07

64 1.0 - 44.41±5.39 91.26±1.29 34.68±10.93 94.39±1.72 35.85±2.56 92.42±0.53 5.68±0.57 98.75±0.13 24.03±5.91 96.02±0.95 28.93±3.86 94.57±0.66 94.75±0.13

64 - 0.001 48.54±4.50 89.40±1.38 45.51±9.64 91.41±2.42 38.34±1.74 91.39±0.49 6.99±0.87 98.64±0.13 21.29±4.28 96.28±0.72 32.13±3.01 93.42±0.74 94.78±0.10

32 - - 43.89±3.14 90.66±0.81 50.86±10.43 91.48±1.74 37.95±0.95 91.73±0.43 5.60±0.74 98.84±0.12 24.57±6.02 95.55±1.33 32.57±2.09 93.65±0.60 94.75±0.14

32 0.001 - 46.53±3.77 89.67±1.09 27.84±9.47 95.29±1.08 37.33±1.63 91.77±0.39 5.65±0.77 98.82±0.11 24.09±6.77 95.68±1.35 28.29±3.33 94.25±0.55 94.68±0.07

32 - 0.1 48.25±5.47 89.32±1.39 25.31±2.15 95.71±0.41 39.49±2.75 91.23±0.83 7.09±1.37 98.63±0.24 26.50±7.71 95.00±2.19 29.33±1.29 93.98±0.44 94.84±0.17

10 - - 53.20±3.90 88.97±0.73 35.62±9.66 94.41±1.28 45.73±6.29 89.73±1.69 11.72±3.39 97.93±0.46 41.80±14.35 92.51±3.03 37.61±4.00 92.71±0.97 91.95±2.32

10 0.01 - 72.61±22.80 72.98±18.81 76.83±24.26 73.13±19.16 72.09±24.70 70.86±17.48 49.57±41.32 78.19±23.02 59.87±32.88 76.66±21.76 66.19±28.10 74.37±19.94 58.10±39.34

10 - 0.001 67.02±17.39 80.09±15.10 58.11±24.43 83.56±16.90 58.03±21.22 81.80±15.94 34.06±33.25 87.46±18.75 56.56±24.29 83.65±17.01 54.76±22.82 83.31±16.67 74.13±32.08

FFS - - - 52.86±4.49 83.47±1.67 38.67±11.21 89.74±5.19 44.65±1.29 87.47±0.77 6.59±0.92 98.67±0.17 31.34±1.88 93.24±0.97 34.82±2.03 90.52±0.98 94.69±0.15

- 0.001 50.74±3.98 84.93±0.75 32.25±12.16 92.97±3.60 42.99±2.30 88.30±1.10 5.76±1.23 98.82±0.27 28.16±6.45 94.18±1.98 31.98±3.10 91.84±1.28 94.73±0.12

- - 1.0 50.08±3.86 84.92±1.85 30.91±6.19 92.77±2.33 45.69±2.59 87.16±0.75 6.22±0.65 98.73±0.11 26.60±3.64 94.80±0.64 31.90±2.51 91.67±0.94 94.85±0.20

96 - - 48.67±2.88 88.70±0.48 40.64±19.36 89.89±9.15 41.38±1.20 90.22±0.88 4.84±0.81 99.02±0.13 27.30±6.08 94.99±1.18 32.57±4.52 92.56±2.03 94.71±0.13

96 1.0 - 48.11±5.15 89.84±1.51 40.65±15.47 93.32±3.16 36.37±2.28 92.29±0.60 5.22±1.35 98.89±0.18 24.84±10.08 95.82±1.68 31.04±5.05 94.03±1.06 94.71±0.08

96 - 0.001 47.24±2.61 89.51±0.88 39.25±10.20 93.84±1.33 40.44±3.32 90.83±0.97 4.44±0.81 99.08±0.12 25.27±6.08 95.71±0.98 31.33±3.13 93.80±0.60 94.84±0.14

64 - - 45.03±2.88 89.96±1.01 37.96±2.68 93.18±1.53 41.70±1.51 90.49±0.57 4.64±0.30 99.03±0.04 22.78±5.67 96.02±0.97 30.42±2.09 93.73±0.69 94.82±0.07

64 1.0 - 51.70±5.67 88.81±1.09 33.02±14.09 94.60±2.30 39.05±3.73 91.53±1.23 5.56±1.95 98.84±0.30 26.63±7.51 95.65±1.12 31.19±4.32 93.89±0.69 94.68±0.08

64 - 0.001 47.16±6.00 88.88±2.08 25.18±9.52 95.65±1.62 43.52±2.75 89.96±0.67 5.01±0.84 99.03±0.13 28.45±8.77 94.79±1.71 29.86±3.34 93.66±0.79 94.79±0.19

32 - - 46.75±3.49 89.61±1.40 31.77±8.73 94.44±1.35 41.51±3.38 90.72±1.02 4.93±1.11 99.04±0.16 28.92±11.23 94.49±2.94 30.78±3.70 93.66±0.95 94.79±0.18

32 0.001 - 49.79±3.05 88.29±0.93 31.60±16.07 94.14±3.53 41.25±1.84 90.58±0.70 5.00±1.28 98.99±0.19 28.24±6.75 95.06±1.22 31.18±5.21 93.41±1.03 94.74±0.17

32 - 0.01 51.83±5.63 87.07±1.91 33.13±6.68 94.35±1.40 46.81±2.95 88.85±1.02 5.37±1.64 98.95±0.28 31.78±8.93 94.56±1.52 33.78±3.89 92.75±1.01 94.70±0.19

10 - - 54.72±5.89 84.77±3.23 45.70±12.95 91.49±2.27 41.52±3.27 89.51±1.31 8.21±3.59 98.33±0.67 28.58±7.75 94.30±1.82 35.75±5.26 91.68±1.38 94.54±0.17

10 0.001 - 62.04±19.73 79.12±14.68 55.11±27.80 81.97±16.88 54.23±23.47 81.49±15.84 26.86±36.64 88.65±19.33 49.99±28.02 84.06±17.28 49.65±25.60 83.06±16.58 77.76±33.88

10 - 0.001 66.08±18.34 75.24±13.01 62.20±29.49 80.75±16.21 56.53±22.11 79.83±15.02 31.00±34.71 87.73±18.88 51.68±24.86 83.40±16.74 53.50±24.12 81.39±15.82 77.62±33.81

regards to the component decomposition in Eq. (20), Fig. 9
shows the energy change with respect to an in-distribution
feature vector when moving in directions with varying con-
tribution of the components of the null space and perpen-
dicular to the null space. Since the null space component
does not change the free energy score, all the changes are in
the vertical direction, showing a greater change when using
FEVER-OOD vs. the baseline methods.

11. Ablation Studies
Tabs. 5 to 7 show more extensive results of different com-
binations of NSR, LSVR and CNR in the FEVER-OOD
framework. The best values for λLSV and λCN are re-
ported. In general, it is observed that using LSVR improves
the detection of the baseline and NSR versions, while CNR
usually decreases the AUROC. It is also seen that NSR
also increases AUROC and decreases FPR95. Nonetheless,
excessive NSR in feature-outlier synthesis methods(e.g.,
VOS using 10-NSR for CIFAR-10) can negatively impact
OOD detection performance. On the other hand, Dream-
OOD models achieve better results with significant NSR,
although LSVR and CNR seem to only be beneficial for
Imagenet-100.

Figs. 10 to 14 show the ablation studies of varying λLSV
and λCN in Eqs. (13) and (14) for different classifica-
tion methods and in-distribution datasets. Fig. 10 shows
the results for FEVER-OOD VOS using CIFAR-10 as in-
distribution, where values corresponding to a λ{LSV ,CN} =
0 refer to no LSV or CN regularisation. In general, LSV
regularisation gives better results than CN regularisation. It

is observed that larger values of λLSV leads to better per-
formance for none or few NSR (VOS, VOS-96-NSR and
VOS-64-NSR). The same trend is observed for FEVER-
OOD FFS in Fig. 11. It is also observed that the mod-
els become unstable when using a large NSR, where the
extreme case of {VOS,FFS}-10-NSR fails for both regu-
larizer at relative small loss weights. This effect could be
caused because regualrizing the least singular value (either
for LSVR or CNR) affects all the directions of the feature
space since there is no null space. This causes makes the
model not able to learn the in-distribution task, failing also
for OOD detection. Additionally, all NSR models fail for
λCN = 1.0.

FEVER-OOD VOS and FFS ablations for the CIFAR-
100 as in-distribution are shown in Figs. 12 and 13. Similar
as with CIFAR-10, LSV regularisation is more stable and
leads to better results than CN regularisation. In both OOD
models (VOS and FFS), it is observed that the best results
are achieved with 114-NSR and an intermediate value for
λLSV . These results indicate that for OOD models based
in outlier generation in the feature space, some reduction
of the null space and a moderate regularizer is benefical.
However, the complete elimination of the null space and
LSV (or CN) regularization might impose a huge prior in
the last layer, making it difficult to learn the in-distribution
task. Finally, Fig. 14 shows the ablations for FEVER-OOD
Dream-OOD with CIFAR-100 as in-distribution. Here it
is observed that NSR by itself leads to better results, sug-
gesting that there might be a significant portion of gener-
ated outliers in with large components in the null space



Table 6. CIFAR-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD
OOD Datasets

Textures SHVN Places365 LSUN iSUN AvgMethod
r-NSR λLSV λCN FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

VOS - - - 81.24±2.11 76.01±0.80 76.09±6.51 83.18±3.59 80.53±1.46 76.25±0.78 37.86±4.06 93.21±0.68 79.34±1.60 76.43±1.44 71.01±1.23 81.02±0.40 76.04±0.22

- 0.1 - 82.87±1.11 76.49±0.94 73.35±2.96 84.57±1.53 80.36±1.16 76.89±0.79 40.05±3.74 92.83±0.46 74.28±4.03 80.25±3.34 70.18±0.87 82.21±0.56 76.01±0.16

- - 0.01 82.51±2.64 76.04±1.91 73.67±3.10 85.31±1.24 80.18±1.08 76.59±0.23 41.08±3.27 92.75±0.63 80.83±4.37 73.79±5.51 71.65±0.96 80.90±1.11 76.20±0.11

114 - - 80.63±0.96 79.06±1.06 81.92±7.49 83.25±4.14 80.23±0.69 77.02±0.34 28.61±1.69 95.20±0.31 76.87±6.24 79.18±3.79 69.65±2.94 82.74±1.65 75.40±0.31

114 0.01 - 80.02±2.75 78.73±1.83 83.45±2.59 82.07±1.36 78.41±0.96 77.71±0.93 28.90±3.61 95.11±0.58 72.07±9.07 80.55±4.70 68.57±2.28 82.83±0.91 75.72±0.16

114 - 0.001 79.37±1.87 79.19±1.03 86.96±1.93 79.25±2.15 78.20±0.48 77.91±0.40 26.05±2.38 95.70±0.34 72.95±4.35 81.12±2.45 68.71±1.18 82.63±0.83 75.44±0.20

100 - - 80.47±2.32 78.21±1.14 79.10±7.42 83.39±3.91 79.19±1.04 77.23±0.50 28.99±2.59 95.15±0.39 75.51±6.68 79.63±3.70 68.65±1.29 82.72±0.57 75.54±0.19

100 0.001 - 82.60±8.93 72.91±11.54 88.71±7.23 72.19±11.75 82.94±8.56 71.84±10.94 43.40±28.32 86.02±18.01 81.55±9.90 72.74±11.58 75.84±12.12 75.14±12.58 60.57±29.78

100 - - - - - - - - - - - - - - -
FFS - - - 82.87±1.39 75.54±0.93 76.32±6.17 84.83±2.36 81.14±1.09 76.27±0.74 36.27±4.91 93.54±1.03 82.83±2.98 74.29±3.08 71.89±1.64 80.89±1.11 76.04±0.11

- 0.01 - 80.95±1.34 76.53±0.70 83.12±5.59 81.61±2.92 80.19±0.84 76.58±0.49 32.93±4.05 94.20±0.51 79.05±5.16 77.28±3.23 71.25±2.11 81.24±0.72 76.27±0.28

- - 0.001 80.27±2.76 76.78±1.53 78.57±7.32 82.57±2.95 80.40±1.09 76.40±0.53 32.91±4.90 94.06±1.02 80.71±7.90 74.49±5.57 70.57±2.41 80.86±0.88 76.05±0.16

114 - - 80.99±1.36 78.17±0.83 83.70±7.11 80.78±5.09 80.24±0.79 77.02±0.45 25.36±2.40 95.73±0.40 76.10±6.85 79.87±3.14 69.28±1.95 82.31±1.27 75.60±0.23

114 0.001 - 79.26±2.67 78.16±1.50 74.28±7.13 85.37±3.20 79.45±0.85 77.25±0.61 24.10±1.42 95.94±0.17 73.61±5.82 80.61±2.49 66.14±1.91 83.47±0.98 75.45±0.37

114 - 0.001 81.77±1.81 76.87±1.76 82.61±7.99 78.78±6.21 80.14±1.05 77.08±0.82 26.15±1.91 95.52±0.27 75.69±7.73 78.84±3.69 69.27±1.69 81.42±0.96 75.14±0.25

100 - - 77.69±2.97 78.62±1.02 77.84±9.62 83.40±3.52 80.41±0.72 76.58±0.35 21.91±0.95 96.25±0.11 79.60±6.06 75.79±5.17 67.49±2.03 82.13±0.85 75.48±0.28

100 0.001 - 84.73±7.80 70.68±10.41 86.40±7.94 74.77±12.47 83.15±8.50 71.57±10.79 39.78±30.19 86.59±18.30 82.75±8.98 72.08±11.35 75.36±12.36 75.14±12.57 60.52±29.76

100 - - - - - - - - - - - - - - -
Dream-OOD - - - 62.20±1.02 83.84±0.38 73.05±1.92 84.56±0.21 77.95±1.97 79.43±0.17 39.90±2.01 92.87±0.44 1.70±0.11 99.58±0.04 50.96±1.44 88.06±0.60 75.61±0.19

- 0.01 - 58.45±2.27 86.04±0.41 68.75 ±1.84 87.65±0.30 77.45±2.11 78.59±0.22 15.45±2.57 97.24±0.09 1.55±0.03 99.63±0.45 44.33±3.48 89.83±0.12 75.87±0.23

- - 0.001 57.4±1.88 86.28±0.32 77.75±1.11 85.13±0.41 78.6±1.23 78.73±0.15 27.2±1.77 95.01±0.42 1.55±0.08 99.57±0.07 48.5±1.54 88.94±0.43 76.32±0.14

256 - - 60.00±3.21 85.42±0.79 67.50±2.47 85.84±0.66 75.90±1.10 79.57±0.43 19.85±1.05 96.74±0.67 1.00±0.02 99.78±0.06 44.85±2.72 89.47±0.242 77.01±0.12

256 0.001 - 54.25±2.13 86.18±0.86 82.60±2.24 81.70±0.91 71.20±1.33 81.23±0.61 23.45±1.31 95.87±0.41 1.05±0.02 99.69±0.05 46.51±0.99 88.93±0.14 76.40±0.30

256 - 1 60.05±2.56 84.52±0.11 61.75±2.03 88.30±0.40 78.15±2.72 76.60±0.82 34.80±1.09 93.18±0.39 1.50±0.14 99.69±0.10 47.25±1.65 88.46±0.68 77.49±0.15

128 - - 52.55±1.95 87.44±0.24 73.95±1.46 80.05±0.53 71.9±2.48 81.17±0.23 17.7±0.91 97.07±0.13 1.3±0.05 99.73±0.16 43.48±2.22 89.09±0.67 76.72±1.21

128 0.1 - 56.45±2.39 87.73±1.01 67.45±1.12 87.53±0.44 78.45±2.46 77.24±0.61 29.6±1.73 94.81±0.40 1.95±0.10 99.5±0.10 46.78±2.72 89.36±0.83 76.21±0.35

128 - 0.01 56.05±2.38 86.35±0.79 83.1±1.95 80.75±0.64 75.95±2.53 79.81±0.37 23.5±0.98 95.66±0.30 1.45±0.12 99.65±0.02 48.01±1.54 88.44±0.55 76.35±0.27

100 - - 57.55±2.48 86.8±0.44 54.45±3.02 88.69±0.59 75.8±1.21 78.88±0.69 24.45±1.57 95.86±0.52 1.6±0.07 99.65±0.21 42.77±2.10 89.98±0.15 76.41±0.32

100 0.001 - 82.6±4.73 62.38±2.23 90.9±3.33 60.9±1.52 84.4±3.72 69.39±2.27 67.05±1.30 72.8±1.90 5.8±0.85 97.81±0.49 66.15±1.79 72.66±1.17 31.76±4.15

100 - - - - - - - - - - - - - - -

Table 7. ImageNet-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD
OOD Datasets

iNaturalist Places365 SUN Textures AvgMethod
r-NSR λLSV λCN FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

Dream-OOD - - - 23.98±2.08 95.94±0.26 41.75±1.72 92.48±0.12 40.85±1.13 92.76±0.09 50.73±0.85 86.21±0.29 39.33±1.08 91.84±0.12 87.76±0.19

- 0.01 - 59.91±3.09 90.89±0.48 66.26±2.17 88.12±0.47 74.26±1.52 84.53±0.33 60.56±1.21 83.91±0.42 65.25±1.50 86.87±0.25 87.85±0.11

- - 0.001 59.71±3.53 90.97±0.70 65.01±1.90 88.39±0.45 73.93±1.58 84.69±0.49 60.51±1.46 84.01±0.51 64.79±1.69 87.01±0.45 87.77±0.13

256 - - 23.84±1.73 95.80±0.30 44.35±1.71 92.14±0.30 42.92±1.98 92.46±0.33 44.38±1.81 88.60±0.54 38.87±1.29 92.25±0.23 87.57±0.24

256 0.01 - 24.02±1.48 95.75±0.26 44.09±1.87 92.02±0.27 43.36±1.53 92.30±0.30 44.55±1.38 88.67±0.39 39.00±1.05 92.18±0.24 87.54±0.24

256 - 0.001 24.42±1.43 95.73±0.30 44.98±2.24 91.98±0.36 43.88±1.63 92.21±0.27 44.76±1.16 88.62±0.57 39.51±0.72 92.13±0.18 87.63±0.18

128 - - 23.96±2.93 95.91±0.38 43.73±2.50 92.25±0.33 43.44±2.69 92.39±0.41 42.38±1.64 89.40±0.33 38.38±2.21 92.49±0.24 87.53±0.12

128 0.01 - 23.46±2.54 95.93±0.36 43.37±1.47 92.19±0.22 42.42±1.60 92.44±0.29 41.86±1.09 89.48±0.27 37.78±1.45 92.51±0.22 87.60±0.11

128 - 0.001 24.55±2.47 95.87±0.30 44.12±2.03 92.20±0.26 43.89±2.21 92.40±0.33 42.53±1.38 89.48±0.40 38.77±1.76 92.49±0.23 87.49±0.11

100 - - 23.13±1.35 96.00±0.21 42.49±2.30 92.37±0.37 41.62±2.37 92.69±0.31 41.88±1.11 89.34±0.23 37.28±1.40 92.60±0.18 87.44±0.07

100 0.01 - 22.24±0.81 96.16±0.14 41.08±3.03 92.59±0.44 40.39±2.84 92.91±0.40 42.31±0.97 89.30±0.37 36.50±1.67 92.74±0.21 87.42±0.15

100 - 0.001 23.26±1.71 96.03±0.26 43.09±2.48 92.40±0.29 41.91±3.05 92.71±0.40 43.49±0.58 89.13±0.42 37.94±1.51 92.57±0.17 87.58±0.11

of the feature space. Dream-OOD follows a similar pat-
ter as the other models for CIFAR-100, suggesting that the
analysis holds for different OOD approaches. As shown in
Tabs. 8 to 10, our energy-based method consistently outper-
forms non-energy-based approaches on most OOD datasets,
achieving a lower FPR and a higher AUROC.

12. Qualitative Results
Additional qualitative examples for object-level OOD de-
tection using VOS [7] and FFS [21] models trained with
and without FEVER-OOD with PASCAL VOC as in-
distribution are shown in Fig. 15 for OpenImages [22] as
OOD, and in Fig. 16 fos MS-COCO [28] as OOD.

13. Limitations and Potential Negative Impact
This section discusses some limitations and potential nega-
tive impact of FEVER-OOD, identifying the following:
• FEVER-OOD does not entirely avoid the null space vul-

nerabilities. While we reduce the size of it, there might
be some anomalies with large components in the feature
space.

• Careful fine tuning is needed in some instances, specially
when reducing the null space significantly. We did not
identify any condition to estimate the regularizer weight
a priori.

• While our analysis show a large change in Energy for
far anomalies (OOD samples), we did not test the per-
formance of FEVER-OOD in this cases.

Finally, our work might have some potential negative im-
pact. For instance, the exploration of these vulnerabilities
might allow for tailored generated outliers that fool (in an
adversarial sense) models based on free energy OOD detec-
tion. Additionally, we trained several models with different
in-distribution datasets to perform the ablation studies, hav-
ing a negative environmental effect due to the large power
consumption for GPU training for such extensive studies.



(a) VOS (b) VOS-96-NSR (c) VOS-64-NSR (d) VOS-32-NSR (e) VOS-10-NSR

Figure 10. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for VOS, using CIFAR-10 as in-distribution (ID).

(a) FFS (b) FFS-96-NSR (c) FFS-64-NSR (d) FFS-32-NSR (e) FFS-10-NSR

Figure 11. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for FFS, using CIFAR-10 as in-distribution (ID).

(a) VOS (b) VOS-114-NSR (c) VOS-100-NSR

Figure 12. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for VOS, using CIFAR-100 as in-distribution (ID).

(a) FFS (b) FFS-114-NSR (c) FFS-100-NSR

Figure 13. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for FFS, using CIFAR-100 as in-distribution (ID).

(a) Dream-OOD (b) Dream-OOD-256-NSR (c) Dream-OOD-128-NSR (d) Dream-OOD-100-NSR

Figure 14. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for Dream-OOD, using CIFAR-100 as in-distribution
(ID).



Table 8. CIFAR-10 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

Non-energy
based method

OOD Datasets

Texture SVHN Place365 LSUN iSUN Avg
ID Acc

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ViM [41] 24.35 95.20 24.95 95.36 44.70 90.71 18.80 96.63 29.25 95.10 28.41 94.60 94.21
ODIN [27] 56.40 86.21 20.93 95.55 63.04 86.57 7.26 98.53 33.17 94.65 36.16 92.30 94.21
Softmax [15] 66.45 88.50 59.66 91.25 62.46 88.64 45.21 93.80 54.57 92.12 57.67 90.86 94.21
GradNorm[17] 71.66 80.79 80.86 81.41 80.71 72.57 53.87 88.39 60.32 88.00 69.49 82.23 94.21
KNN [38] 27.57 94.71 24.53 95.96 50.90 89.14 25.29 95.69 25.55 95.26 30.77 94.15 94.21
NPOS [39] 8.39 94.67 5.61 97.64 18.57 91.35 4.08 97.52 14.13 94.92 10.16 95.22 93.86

Table 9. CIFAR-100 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

Non-energy
based method

OOD Datasets

Texture SVHN Place365 LSUN iSUN Avg
ID Acc

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ViM [41] 86.00 71.95 54.30 88.85 84.70 74.64 57.15 88.17 56.65 87.13 67.76 82.15 73.12
ODIN [27] 85.75 73.17 89.50 76.13 41.50 91.60 74.70 83.93 90.20 68.27 76.33 78.62 73.12
Softmax [15] 86.45 71.32 85.30 72.41 73.40 81.09 85.55 74.00 88.55 68.59 83.85 73.48 73.12
GradNorm[17] 96.20 52.17 91.05 67.13 55.72 86.09 97.80 44.21 89.71 58.23 86.10 61.57 73.12
KNN [38] 88.00 67.19 66.38 83.76 79.17 71.91 70.96 83.71 77.83 78.85 76.47 77.08 73.12
NPOS [39] 33.07 92.86 17.98 96.43 80.41 73.74 28.90 92.99 43.50 89.56 40.77 89.12 73.78

Table 10. ImageNet-100 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

Non-energy
based method

OOD Datasets

iNaturalist Place365 SUN Textures Avg
ID Acc

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ViM [41] 72.40 84.88 76.20 81.54 73.80 83.99 22.20 95.63 61.15 86.51 84.16
ODIN [27] 53.00 89.52 70.40 82.77 66.90 85.01 48.40 89.19 59.67 86.62 84.16
Softmax [15] 76.30 82.20 81.90 77.54 82.70 78.35 75.30 80.01 79.05 79.52 84.16
GradNorm[17] 50.82 84.86 68.27 74.46 65.77 77.11 40.48 88.17 56.33 81.15 84.16
KNN [38] 56.96 86.98 64.54 83.68 63.04 85.37 15.83 96.24 50.09 88.07 84.16
NPOS [39] 53.84 86.52 59.66 83.50 53.54 87.99 8.98 98.13 44.00 89.04 85.37



(a) (b)

Figure 15. Additional visualization of detected objects on the OOD images (from OpenImages [22]) by free energy-based OOD (VOS)
[7], free energy-based OOD (FFS) [21] and FEVER-OOD (our approach). The in-distribution is PASCAL VOC [10] dataset. Blue: OOD
objects detected and mis-classified as being in-distribution. Green: the same OOD objects correctly detected as OOD by FEVER-OOD
(ours).



(a) (b)

Figure 16. Additional visualization of detected objects on the OOD images (from MS-COCO [28]) by free energy-based OOD (VOS)
[7], free energy-based OOD (FFS) [21] and FEVER-OOD (our approach). The in-distribution is PASCAL VOC [10] dataset. Blue: OOD
objects detected and mis-classified as being in-distribution. Green: the same OOD objects correctly detected as OOD by FEVER-OOD
(ours).


