ReassembleNet: Learnable Keypoints and Diffusion for 2D Fresco
Reconstruction

Supplementary Material

A. Introduction

In this supplementary martial, we present details on: the
experimental details (sec. B; a detailed description of the
diffusion process (sec. C); the evaluation over the semi-
synthetic dataset (sec. D), metric formulation (sec. E); the
keypoint selector (sec. F); an ablation study on the features
(sec. G); and qualitative results for synthetic (sec. H) and
RePAIR (sec. I) datasets.

B. Experiment Details

Hardware. The experiments were conducted on four ma-
chines, each equipped with an NVIDIA A100 GPU (40GB),
380GB of RAM, and two Intel(R) Xeon(R) Silver 4210
CPUs (2.20GHz, Sky Lake architecture).

C. The Diffusion Process

Forward Process. We define the forward process as a
fixed Markov chain that adds noise following a Gaussian
distribution to each input, i.e., each keypoints, X to obtain
anoisy version, X}, at timestep ¢. Following [16], we adopt
the variance 3; according to a cosine scheduler and define
g [x3) as:

q(xi} |xj5) = N (xi}s Vaxig, (1 — @)l), (4)

where @ = [['_,(1 — A.) and L is the identity matrix.

Reverse Process. The reverse process iteratively recov-
ers the initial poses for the set of elements X1 using the
current (noisy) poses X; = {X/™}M_| and the features
H = {H™}M_, where each H™ = {h"}X  is the set
of features for the keypoints in each piece. The recovered
poses X;_1 are computed as:
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where ay = 1 — f3¢, and (X}, H, t) is the estimated noise
output by ReassembleNet that has to be removed from X,
at timestep ¢ to recover X;_1.

The reverse (denoising) step adds a stochastic term o€,
where ¢, ~ N(0, ), which governs the randomness in-
jected at each timestep ¢ (see Eq. (11) in [31]). By setting
o, = 0, the reverse diffusion becomes fully deterministic.

D. Semi-Synthetic Dataset Evaluation

We compare ReassembleNet on this dataset with learnable
methods. We train ReassembleNet using geometric, lo-
cal, and global features in three different configurations: (i)
ReassembleNet-conf. 1, which has no Learnable KP selec-
tion, (ii) ReassembleNet-conf. 2, which uses Frozen Learn-
able KP selection, and (iii) ReassembleNet-conf. 3, which
incorporates Learnable KP selection.

Method RMSE (R°)l RMSE (Trum) |
DiffAssemble [26] 122.92 73.79
PairingNet [40] 60.11 266.84
ReassembleNet-conf. 1 40.43 1691
ReassembleNet-conf. 2 36.02 14.69
ReassembleNet-conf. 3 35.79 15.58

Table 4. Results on Semi-Synthetic dataset.

Results. Table 4 presents the results on the Semi-
Synthetic Dataset. As shown, ReassembleNet outperforms
the second-best method across all the metrics. This re-
sult demonstrates that representing irregular objects as 2D
points, as done by ReassembleNet, is more effective than
treating them as squared images with padding, as done by
DiffAssemble, to achieve a regular shape.

E. Metrics Explanation

To evaluate the performance of the methods, we use three
different metrics: RMSE for translation, RMSE for rotation
and the Qpos-

The RMSE for translation and rotation are defined as:
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where " denotes the mean ground truth translations, and
(' denotes the corresponding mean ground truth rotations
for the m-th piece.

We also evaluate the performance of the methods using
the ()pos metric [36], which quantifies the overlap between



Category Method Global Feats  Local Feats ~ Geom Feats  Qpos T RMSE (R°)|  RMSE (Trm) |
no Learnable KP selection X X X 0.18 64.51 80.19
Frozen Learnable KP selection X X X 0.23 62.45 33.82
no Learnable KP selection X X \Y% 0.17 59.76 17.76
Frozen Learnable KP selection X X \% 0.22 43.11 22.03
no Learnable KP selection v X X 0.14 63.24 32.30
Frozen Learnable KP selection \' X X 0.22 62.95 24.42
no Learnable KP selection X v X 0.27 64.08 19.75
No Transfer Learning ~ Frozen Learnable KP selection X \Y% X 0.28 49.58 23.11
no Learnable KP selection A\ \'% \' 0.35 55.01 16.12
Frozen Learnable KP selection v v A\ 0.39 51.96 26.67
Learnable KP selection A\ v \' 0.27 47.61 19.16
no Learnable KP selection) X X X 0.27 53.47 28.74
Frozen Learnable KP selection) X X X 0.15 51.95 21.63
no Learnable KP selection X X \% 0.21 56.27 17.76
Frozen Learnable KP selection X X v 0.15 41.74 20.92
no Learnable KP selection \% X X 0.19 59.07 2343
Frozen Learnable KP selection v X X 0.13 58.97 23.26
no Learnable KP selection X \ X 0.20 61.83 17.64
Transfer Learning Frozen Learnable KP selection X \Y% X 0.15 45.46 16.68
no Learnable KP selection A\ \'% \' 0.16 42.98 18.11
Frozen Learnable KP selection A\ \'% \Y 0.17 39.12 18.41
Learnable KP selection \% \'% \'% 0.21 3291 17.18

Table 5. Ablation on ReassembleNet settings.

the ground truth fragment poses (translation and rotation)
and the reconstructed solution. To ensure that the met-
ric is invariant to rigid motions—preventing good solutions
from being penalized due to differing global rotations—we
first apply a rigid transformation to align the largest recon-
structed fragment (referred to as the anchor) with its cor-
responding ground truth fragment in both translation and
rotation. To compute @),,s, we first define the area of a
fragment, denoted as A(m). In 2D, the shared area can be
determined in two different ways: i) by comparing the non-
transparent pixels of two large canvases containing all frag-
ments, or ii) by computing the area intersection of the regis-
tered 2D point clouds. Additionally, fragments are weighted
based on their area, emphasizing the impact of errors on
larger fragments. The metric is formally defined as:
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where w,,, = S JAR)] represents the weight of each frag

ment, and A(7) denotes the area of the fragments with pre-
dicted rotation and translation.

F. Keypoints Selector

As detailed in Section 3.2, our approach involves selecting
k keypoints. To achieve this, we employ our learnable key-
point selection module, which is pre-trained to improve its
effectiveness. During the pre-training phase, we utilize the
RePAIR dataset, treating each piece independently. This

dataset enables the model to learn to identify salient key-
points in a diverse and representative context.

We then optimize the module using the two loss func-
tions defined in Equation (2), with Agreq = 1 and Ape, = 1.
These losses work together to enforce geometric precision
and structural consistency, while also mitigating selection
bias toward task-specific nodes.

G. Ablation Study on Multimodal Features

Table 5 presents a comprehensive ablation study assess-
ing the impact of the final configuration used for Reassem-
bleNet. The results clearly demonstrate that incorporating
all features and leveraging transfer learning are crucial for
tackling this challenging task. By utilizing the full set of
features, our model gains both geometric awareness of the
object and semantic understanding through local and global
image representations. This injected bias enhances the net-
work’s ability to learn effectively.

H. Qualitative comparison on Semi-Synthetic
Dataset Creation Process

In this section, we are reporting a visual representation of
the semi-synthetic dataset created following [40] and the fi-
nal results of the semi-synthetic dataset we were able to cre-
ate by adding the random erosion of the borders with a slight
random rotation and translation. Each fragment undergoes
morphological erosion using a 3 x 3 kernel, with between 1-
5 iterations randomly simulating varying degrees of degra-
dation. Then, each fragment is randomly augmented with



(c) Example of a generated fresco generated
(a) (b) using our modified algorimth

Figure 6. An illustration of (a) an example of a RePAIR fresco, (b) a synthetic fresco generated using the algorithm proposed by [40],
and (c) a synthetic fresco generated using our modified algorithm. The black contour is intentionally added to highlight the borders of the
pieces in b and c.

rotation (£3°) or translation (3 pixels in x and y), applied
via affine transformations to introduce geometric variabil- (l

ity. These augmentations ensure diversity and realism in ,
" '.4

the generated dataset.

Figure 6 shows the visual differences in the creation of
Figure 7. Qualitative results.

the semi-synthetic dataset. As can be seen, our proposed
algorithm (Figure 6¢) exhibits a certain similarity to Fig-
ure 6a, which is taken from the real-world dataset RePAIR.
In contrast, Figure 6b clearly shows that the puzzle gener-
ated using the algorithm in [40] deviates significantly from
the characteristics present in RePAIR: the pieces are assem-
bled to align perfectly without gaps, ensuring a seamless
matching between the pieces.

Ground Truth

Predicted

I. More Qualitative Results on RePAIR
Dataset

We report some more qualitative results on the RePAIR
dataset. In particular, we report with Figure 7 some fail-
ure cases where it can be seen that the model is learning the
complexity of groundtruth data. We also provide baseline
comparison results in Fig. 8.
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Figure 8. Qualitative comparison.
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