Towards Visual Localization Interoperability: Cross-Feature for Collaborative
Visual Localization and Mapping

Supplementary Material

This supplementary material provides information about
additional ablation studies on different aspects for our pro-
posed Cross-Feature method.

1. Ablation studies

In order to understand the impact on the performance of
some architectural parameters, we carried different ablation
studies. First, we studied the impact of the training strategy
for interoperability Visual Localization. Then, we study the
impact of some parameters in the training and matching per-
formance: loss combination, patch size and number of fea-
tures. For the latter, we used the HPatches dataset [1], mea-
suring the MMA and the inlier number, in order to under-
stand how the different parameters affect the Cross-Feature
matching performance, so we limited the training to a per-
pair embedding space with only SIFT and SuperPoint.

1.1. Training strategy

As discussed in the computational cost subsection from the
main paper, due to the high computational load of our train-
ing method, we had to limit the number of training features
to two. For that, we devised two different ways of training
to reach a real common embedding space between different
feature algorithms. First, by training it per-pair (CFemb*) or
second, by reaching a shared space for the four algorithms
in an iterative way (the approach used in the whole experi-
ment section of the main paper, denoted as CF®™). In this
ablation study, we measure the difference in performance
between these two training strategies in the Aachen bench-
mark [2]. This is measured for ORB and DISK feature al-
gorithms, as the first encoder for the second method was
trained for SIFT-SuperPoint, and thus performance does not
vary for these feature pair. Results of this ablation study are
shown in Tab. 1, where we can see that performance is better
for almost all combinations when using the per-pair train-
ing, except for SuperPoint and ORB, where the difference
between the natures of the visual descriptors, i.e., learned
and binary, may complicate to achieve good performance.

1.2. Training parameters

1.2.1. Loss type

For this ablation study, we studied the impact of the differ-
ent losses (see Section 4.3) to evaluate how the information
flow (which depends on the images and feature algorithms
used for training) impacted the final matching performance
of the feature embedding. For this, we trained the encoders

Table 1. Comparison of the two different interoperability strategies
in Aachen Day and Night benchmark [2].
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for SIFT and SuperPoint under five different combinations
of the losses: just homogeneous (L), combining homo-
geneous and the simpler Cross-Feature (£ + £57), com-
bining homogeneous and the complex Cross-Feature loss
(LPS + £PP) a combination of the two Cross-Feature
losses without homogeneous (£ + £PP) and the com-
bination of the three losses (our proposed version). Results
in Fig. 1 show that only using the homogeneous loss just
allows for matching between same algorithms but impedes
the heterogeneous case. However, its use is also important,
as we can see a drop in the number of inliers in the case
not using it. Additionally, results show that the combina-
tion of both Cross-Feature losses with the homogeneous is
the one that rendered best results. We think that the simple
Cross-Feature loss (£5P) acts as a bridge between the ho-
mogeneous and the complex Cross-Feature that provides a
better consistency to the whole learning process.
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Figure 1. Performance on the HPatches dataset for different com-
binations of the loss functions. We average results on MMA and
inliers for all sequences, comparing separately when projecting
features from the same (left) and different (right) algorithms. Note
the difference in scale.



1.2.2. Patch size

For this ablation study, we studied the impact of the patch
window size T;, (used to fill the feature map) in the final
matchability of the embedded feature in the heterogeneous
scenario. The bigger this window size is, the higher num-
ber of overlaps between features. We varied this param-
eter from 7 to 15 and studied the matching performance,
as we observed that it did not affect the self-consistency of
the projections (the projection of the features is straightfor-
ward in the homogeneous case). Results can be seen in the
Fig. 2, showing that the performance grows substantially
when T}, > 9, due to an increment of the available infor-
mation. The matching performance do not increase much
between T, = 13 and T}, = 15, so we theorize that it
will not be much more informative for bigger window sizes,
while it takes substantially more training time.

Same feature Different feature

=<

== -
4“’//’—_—
=

=

0

®n 0.0 0.0

< 1000 100

=
=
Sl —— | %
=
g //
g
S
= :

0 0
E 1

3 3 i
threshold [px]

2 3 4
threshold [px]
mb) OUR® ””’] SIFT - SuperPoint (T,, =

“m] SIFT - SuperPoint (T, = 7)

[ [ (Tw =17
[OUR®™] SIFT - SuperPoint (T}, = 9) [OUR™] SIFT - SuperPoint (T, = 9
[OUR™] SIFT - SuperPoint (T}, = 11) [OUR®™] SIFT - SuperPoint (T,, = 11)
[OUR“™] SIFT - SuperPoint (7, = 13) [OUR“™] SIFT - SuperPoint (7, = 13)
—— [OUR®™] SIFT - SuperPoint (T}, = 15) —— [OUR®™] SIFT - SuperPoint (T}, = 15)

Figure 2. Performance on the HPatches dataset for varying patch
size. We average results on MMA and inliers for all sequences,
comparing separately when projecting from different features.

1.2.3. Numer of features

For this ablation, we studied the impact of the number of
extracted features per patch on the model performance. We
observed that, in the default configuration, the number of
features per patch was n ~ 300 by average. For the ex-
periment, we trained the encoders varying the number of
sampled features (by setting a maximum number of detec-
tions in the feature extractors). For the three experiments,
we used the same number of extracted features in evalua-
tion. Fig. 3 demonstrates that the number of features heav-
ily impacts its matching performance, as a higher number of
features ensures a higher amount of available information,
especially for heterogeneous correspondences.
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