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Supplementary Material

In the following, we provide additional information on
our data, the pretraining of TerraMind and its tokenizers, the
quality of the tokenization, any-to-any generation matrices,
and comparisons of TerraMind in unimodal and multimodal
finetuning against specialized U-Net and ViT models.

7. TerraMesh Dataset

All versions of TerraMind have been pretrained on Ter-
raMesh or a subset of it. TerraMesh is a comprehensive
multimodal Earth observation dataset designed for large-
scale model pre-training. It will be made publicly available
under a permissive license in a preprint during the review
process of this paper. The dataset includes nine modalities
and we visualize examples of the dataset in Figure 8.

The dataset contains over 9 million globally distributed,
spatiotemporally aligned samples across nine core modali-
ties. Each modality is precisely co-registered at a 10-meter
resolution, primarily based on Sentinel-2 grids. The S-1 and
S-2 samples are sourced from MajorTOM-Core [23] and
SSLAEO-S12vl1.1 [6]. It integrates Sentinel-1 SAR data
with Sentinel-2 optical data (L1C top-of-atmosphere and
L2A bottom-of-atmosphere reflectance), ensuring versatility
for various downstream tasks. Because the source datasets
contain only one S-1 product, each sample has either S-1
GRD or S-1 RTC data. Additionally, TerraMesh includes nor-
malized difference vegetation index (NDVI) maps derived
from Sentinel-2, Copernicus digital elevation model (DEM)
data providing topographic context, and land-use/land-cover
(LULC) maps from ESRI, enhanced with accurate cloud
masks generated by the SEnSel v2 model[22].

To ensure broad geographic and thematic diversity, Ter-
raMesh employs subsampling techniques, selectively includ-
ing representative samples from each global ecoregion and
land-cover class, while downsampling highly homogeneous
regions such as deserts and tundra. Another critical aspect is
the data preprocessing pipeline, which includes reprojection,
temporal alignment, and filtering to minimize missing data
and artifacts, ensuring high-quality, analysis-ready samples.

TerraMind.v1-B-single was pre-trained on a subset
of TerraMesh with one million samples, specifically the
SSL4EOS12 v1.1 locations, using only four image modal-
ities: S-2 L2A, S-1 GRD, DEM, and LULC. Additionally,
we performed continuous pre-training with image captions.
These captions were created using LLaVA-Next [37] and
Overture Maps data [47]. The automated captioning pipeline
includes a prompt with a chain-of-thought process to gen-
erate diverse captions. The captioning model is asked to
generate three question-answer pairs and describe the full

image later. We use the S-2 RGB bands and Overture base
layer tags as inputs. Domain experts evaluated a subset of
1.3k captions, resulting in 69% of the captions without any
hallucinations while the average completeness scores were
3.87 on a scale from O to 5.

8. Pretraining details

In this section, we give additional details on the pretraining
of both TerraMind and its tokenizers.

8.1. Tokenizer models

The tokenizer models are pretrained using a Vision Trans-
former (ViT) encoder and a patched UNet decoder, with
input images ranging from 224x224 to 256x256 in size. The
model was trained with patch sizes of 16x16 for the ViT
encoder and 4x4 for the UNet decoder. A tanh MLP was
used before the quantizer, as outlined in the ViT-VQGAN
paper, to enhance tokenization quality.

The model utilized a Finite-Scalar Quantization (FSQ)
approach with a codebook size of §-8-8-6-5, aiming to learn
consistent and abstract representations across image patches.
The latent dimension was set to 5. We leverage the normal-
ization of codebook entries to the unit sphere during training.
This concept is borrowed from the ViT-VQGAN approach,
which applies a specific form of normalization to improve
the quality and efficiency of learned representations. Addi-
tionally, an EMA-based quantizer was used with a decay rate
of 0.99 to track and improve quantization over time.

During diffusion-based pretraining, the model was trained
for 1000 timesteps using a linear beta schedule, with MSE
loss as the objective. The training leveraged half-precision
(fp16) and used an AdamW optimizer with specific learning
rate scheduling and warmup strategies. The model also in-
corporated model EMA for stable training and set a batch
size of 1 per GPU with various regularization techniques like
grad clipping and random horizontal flips.

We pretrained the TerraMind tokenizers for image-like
modalities with DDP on 4 GPUs for a total of 100 epochs
on the respective modality of TerraMesh. We use a base
learning rate of 1e-4, an effective batch size of 64 samples
per GPU, i.e. the global batch size is 256. We reach a GPU
utilization of 99% for single channel modalities like LULC
and NDVI, and over 80% for all multi-channel modalities.

8.2. TerraMind

We pretrained both TerraMindv1-B and TerraMindv1-L with
DDP on 32 GPUs. We determine the global batch size based
on initial experimental runs comparing a global batch size of
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Figure 8. Visualization of the spatial-temporal alignment across modalities in TerraMesh. S-2 L2A uses IRRG pseudo-coloring and S-1 RTC
is visualized in db scale as VH-VV-VV/VH. Copernicus DEM is scaled based on the image value range.

2K, 4K, and 8K. In addition, we determine the base learning
rate starting from le-4 and iteratively experimented with
half and double learning rates. Ultimately, we end up with
a base learning rate of 2e-4 for a cosine annealing sched-
uler set to run for 500B tokens. For the v1-L model, we
reach a GPU utilization of 85+%. Overall, the training of
TerraMindv1-B took 12 days on 32 A100 GPUs, i.e., 9’216
GPU hours. Over the course of the pretraining, we also exper-
iment with different configurations of the Dirichlet sampling
distribution. In total, the pretraining experiments have been
approximately three times larger than the final runs resulting
in approximately 30K GPU hours allocated for pretraining.

We provide an overview on the scaling dynamics when
going from TerraMindv1-B to TerraMind v1-L in Figure 9
with identical hyperparameters and compute. Overall, as
expected, we observe a significant gap in the validation
losses across modalities. We finally provide the validation
losses per modality after pretraining of TerraMindv1-B and
TerraMindv1-L in Table 9.

Model S-2L2A  S-1GRD S-1RTC DEM NDVI
Random 9.68 9.68 9.68 9.68 9.68
VI1-B 5.67 7.84 7.64 2.19 6.42
VI-L 5.34 7.69 7.53 2.14 6.25

Table 9. Validation losses of full pre-training of TerraMindv1-B
and v1-L.
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Figure 9. Example of the scaling behavior of TerraMind comparing
v1-B and v1-L models for the first 350B tokens on the validation
loss of optical S-2 L2A data. Overall, TerraMind-L outperforms
TerraMind-B after approximately 10% of the training schedule of
the large model.

9. Tokenizer performance and general learnings

In the following, we provide details on the tokenizations
of TerraMind. At least for image-like modalities, the tok-
enizations represent an important and computationally heavy
phase of the pretraining, which is why we highlight impor-
tant learnings in the following.

Learnings. Overall, we learned that the tokenizer per-
formance can be quite sensitive, which is especially related



to the significant bottleneck compression of up to 3000x
after the encoder. When leveraging finite-scalar quantization
(FSQ) instead of vector quantization (VQ), we observed ex-
actly what the original FSQ paper [51] claims: FSQ makes
quantization easier — yet in our experiments it did not im-
prove the reconstruction performance in terms of MSE losses.
We leverage FSQ as the training was more stable and less
sensitive to the learning rate, which is likely related to the
fact that, unlike VQ, FSQ does not require an additional
codebook loss. We still observed that all tokenizer models
were sensitive to the learning rate, with higher learning rates
resulting in non-differentiability (NaN losses), and low learn-
ing rates caused blurry results.

In addition, we experimented with the codebook size. In
our experiments, we observed that the level of detail in the
reconstructions was significantly higher for single channel
input compared to multi channel input (e.g., 12 band S2-
L2A data). Naturally, with less channels, the compression
bottleneck for equal-sized codebooks is lower. Therefore,
we hypothesized whether multi-spectral data requires larger
codebook sizes to obtain higher level of detail in the recon-
structions. In contrast to our expectation, when increasing the
codebook size over 16K for modalities with more than three
input channels, the reconstructions had significant artefacts.
This suggests that even though the compression bottleneck is
lower, higher codebook sizes are more difficult for the model
to use, which is in line with previous literature. However, we
were surprised to see more artefacts in the reconstructions
of models with a codebook size 32K compared to 16K.

Finally, we experimented with exponential moving aver-
age (EMA) updates for the tokenizer models. As expected,
the models were less responsive to gradient updates. The
resulting reconstructions smoothed out more of finegrained
features. Together with the generative diffusion process in
the tokenizer decoder, the resulting reconstructions often
looked like hallucinations, e.g. bridges over rivers were not
existing anymore in the reconstruction images. We there-
fore decided to ommit expotential moving average in our
tokenizer models.

9.1.FSQ vs. VQ

Generally, our pretraining experiments comparing FSQ with
vector quantization suggest that both approaches can achieve
the same level of performance, yet reaching optimal levels
of performance with VQ is regarded to be more challenging
than using FSQ. We visualize this through (a) the recon-
struction loss and (b) the gradient norms of the tokenizer
pretraining on S-2 L2A data in Figures 10 and 11, respec-
tively. Overall, we observe that both approaches reach the
same level of convergence, however FSQ requires less tuning
and is generally more stable than VQ. This especially also
applies for the grad norms.

Performance. In the following, we assess the accuracy of
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Figure 10. Pretraining reconstruction losses of S-2 L2A modality
comparing finite-scalar quantization (FSQ) and vector quantization
(VQ) approaches. Overall, both approaches reach the same level
of performance. The FSQ approach converges smoother than VQ,
while requiring less tuning.
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Figure 11. Gradient norms for pretraining of S-2 L2A tokenizers
comparing finite-scalar quantization (FSQ) and vector quantization
(VQ) approaches. The FSQ approach converges smoother than VQ,
while requiring less tuning.

our tokenizer models. Besides visual quality assessments and
quantitative assessments with MSE metrics, we were partic-
ularly interested in whether our tokenizers exhibit geospatial
biases. Understanding this is crucial to ensure TerraMind
has a uniform level of performance across the globe. In addi-
tion, we investigate the reconstructions of radar data in more
detail, as radar data by nature includes significant noise in
the amplitude data. This could interfere with the noise gen-
eration in the diffusion process of the decoder, which is why
we assess the structure of the reconstructions using SSIM
and PSNR metrics.
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Figure 12. Spatial distribution of mean squared errors of the S-1
tokenizer on the validation set of the pretraining data.
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Figure 13. Spatial distribution of mean squared errors of the S-2
tokenizer on the validation set of the pretraining data.

In Figures 12 to 14, we provide an overview on the spatial
distributions of the S-1 GRD, S-2 L.2A, and DEM tokenizer
on the validation data of the SSL4EO-S12 subset which
is focused on urban areas and therefore relevant for many
downstream applications. Overall, we observe low MSE
errors and particularly low deviation across geographic re-
gions. For optical S-2 data, we observe minor difficulties
in reconstructing images from Northern Asia, which we
manually investigated. Overall, the vast majority of those
samples are depicting snowy/icy conditions that have very
high reflectance values of up to 12,000 compared to a normal
range of [0, 255] in RGB data. On those long tail distribution
samples, the S-2 tokenizer naturally has more difficulties.

S1-tokenizer quantitative analyses. In the following,
we pay particular attention to the performance of the radar
S-1 tokenizer, which might be more challenging to train on
a reconstruction task due to the inherent speckle noise in
radar satellite data. We therefore evaluate the reconstructions
of the S-1 tokenizer using the structural similarity index
(SSIM) and peak signal-to-noise ratio (PSNR). Both input
and reconstruction for S-1 are in a dB scale. In addition to
S-1 evaluation metrics being computed in the dB space in
Table 10, they also are calculated in the denormalized space.
On the contrary, the S-2 evaluation metrics are computed in
the normalized space.
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Figure 14. Spatial distribution of mean squared errors of the DEM
tokenizer on the validation set of the pretraining data.

We give a more extensive background on radar data in
the following for interested readers and non-EO experts. Re-
constructing realistic and accurate synthetic aperture radar
(SAR) S-1 VV and VH data is challenging due to factors
inherent in the specific characteristics of SAR and the S-1
mission. SAR data is affected by complex interactions be-
tween the radar signal and Earth’s surface. SAR is based
on radar backscatter, which is influenced by surface rough-
ness and moisture content. The interaction of radar waves
with different surfaces, including vegetation structure and
urban environments, can produce complex backscatter pat-
terns. The two polarizations, VV and VH, capture different
scattering mechanisms: V'V is sensitive to surface roughness
and vegetation, while VH captures cross-polarized interac-
tions that are influenced by surface and volumetric features
[14, 35, 56]. In addition, SAR inherently contains speckle
noise, which obscures fine details, making it difficult to
extract accurate information. To evaluate the SAR data tok-
enizers of TerraMind, we employ various evaluation metrics
to assess quality and accuracy. We compute the MAE and
RMSE for quantifying pixel-level differences, the SSIM to
compare image structural content, and the PSNR [1, 67, 73].

Table 10 presents the quantitative evaluation of the Terra-
Mind tokenizer reconstructions across multiple modalities.
The results show a reasonable reconstruction performance
for optical data, indicating both structural and perceptual
fidelity. For radar modalities, S-1 GRD and S-1 RTC achieve
comparable PSNR values, though SSIM scores are lower,
suggesting that while the reconstructions are visually plausi-
ble, they exhibit moderate structural deviations. In addition
to these quantitative metrics, we also conducted qualitative
assessments through visual inspection to identify artifacts
and inconsistencies not captured by numerical scores alone.

10. Additional experiments

In the following, we provide additional experiments, espe-
cially with regard to the quality of the latent space and the
full finetuning performance. To understand the quality of the



Modality MAE RMSE SSIM PSNR
S-1GRD 2403 3220 0565 30.291
S-1RTC 2216 2888  0.466 30.389
S-2L2A  0.055 0.134  0.851 27.439
DEM 170.7 7372 0974 20.712
NDVI 0.091 0.168  0.647 21.517

Table 10. Evaluation of SAR VV and VH and S-2 reconstructions
by the TerraMind tokenizers using MSE |, SSIM 1 and PSNR 1 on
the validation dataset of the SSL4EO-S12 subset (8.5k samples).

latent space, we compute performances of nearest neighbor
approaches for image classification tasks or using prototypi-
cal neural networks. We assess the performance of full fine-
tuning by comparing with end-to-end trained, task-specific
models like U-Nets and ViTs. We additionally compare the
quality of the generations with the pseudo-labels used to
pretrain TerraMind in an ablation experiment in a zero-shot
setup.

10.1. Geolocation prediction

To better understand how TerraMind assigns geolocations,
we further employ a Monte-Carlo sampling on the latitude-
longitude grid for an optical tile from the validation data in
Figure 15. We observe that while TerraMind is not predicting
the correct geolocation (e), there is a very high likelihood
that the predicted geolocation is one of the adjacent grid
points that have been seen during pretraining (e). This re-
sult suggests that even for data from unseen geolocations,
TerraMind remembers similar samples from the pretraining
data () and returns the geolocation of the samples with high
similarity. This capability paired with the global pretraining
of TerraMind suggests that geo-localization of data from
unseen locations is possible but determined by the similarity
to images from adjacent locations.
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Figure 15. Distribution of predicted geo-locations for an optical
S-2 L2A sample from the validation set. e is the correct location, e
are Monte-Carlo sampled locations from TerraMind, e represents
the distribution of training locations. TerraMind’s geo-localization
seems to be based on similar optical samples in the training dataset
for which TerraMind then outputs the geolocation.

We further extend the analysis of Figure 7 by addition-
ally prompting the model for likely locations of urban areas.

Overall, we observe that the model correctly identifies many
densly populated areas across the globe. We also note over-
predictions in, for example, North Africa and middle-east.
This observation suggests that the model might confuse bare
land and urban areas in these regions.
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Figure 16. Prediction distribution of the land use class “urban” with
a sampling temperature of 7' = 1.0. TerraMind has a reasonable
internal representation of the geolocation of specific contexts, like
land use classes.

10.2. Few-shot experiments

We present additional few-shot experiments with the Eu-
roSAT and METER-ML dataset in Table 11. We use the
embeddings of the pre-trained encoders without any addi-
tional fine-tuning. The patch embeddings of each image are
averaged for image-level classification tasks.

The experiments include four different few-shot settings
with varying numbers of examples and classes. 5-way refers
to sampling five classes per run, while full-way describes ex-
periments with all dataset classes per run. 1-shot and 5-shot
indicate that one or five images are sampled for each class per
run. 5-shot experiments with five support samples per class
are using Prototypical Networks [60] for classification. This
approach averages the embeddings of the selected labeled
images (support set) and classifies the target images (query
set) based on the class prototype with the lowest Euclidean
distance from each sample. In the 1-shot setting, Prototypical
Networks are mathematically equal to 1-Nearest-Neighbor
classification. We refer to the original paper for details [60].
Different from literature, we evaluate each run on the full
test set instead of subsampling query images.

TerraMind performs best on both datasets, outperforming
all other geospatial foundation models as well as the CLIP
vision encoder [57]. Interestingly, the base version leads to
overall better results than the large model. Similarly, Prithvi’s
smaller 1.0 version has comparable results to its larger 2.0
300M version, indicating that model size has only a limited
effect on few-shot performance.

In addition to S-2 L1C, the METER-ML dataset provides
high resolution RGB images from NAIP with 1 m resolution.
Only CLIP and TerraMind can process RGB images without
any fine-tuning. While CLIP profits largely from the higher
resolution inputs, TerraMind only performs marginally better



EuroSAT METER-ML
S5-way 5-way full-way full-way 5-way 5-way full-way full-way
Model Tnput 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CLIP-ViT-B/16 S-2 RGB 57.00 70.72 43.92 58.30 29.15 37.44 23.13 30.53
CLIP-ViT-B/16  NAIP - - - - 32.01 42.35 25.66 35.81
DeCUR S-2L1C 50.54 64.35 37.53 50.82 27.87 33.64 20.95 27.21
Prithvi 1.0 100M S-2L1C 60.11 73.29 46.86 60.66 26.08 35.81 22.33 29.21
Prithvi 2.0 300M S-2LI1C 61.06 73.21 47.47 60.47 28.26 36.13 22.52 29.59
TerraMindvl-B  S-2L1C 70.83 87.94 57.48 79.66 33.90 43.89 26.85 37.41
TerraMindvl-B ~ NAIP - - - - 32.23 44.75 25.53 37.85
TerraMindvl-L  S-2LIC 70.07 86.29 56.58 77.39 33.09 42.72 26.02 36.34
TerraMindvl-L ~ NAIP - - - - 32.59 44.99 25.94 38.29

Table 11. Few-shot classification results on EuroSAT and METER-ML measured in mean accuracy 1 averaged over 200 runs. 5-way refers
to five randomly sampled classes per run, which is a default setting used in few-shot learning. Full-way refers to sampling all dataset classes,
i.e., ten EuroSAT classes and seven METER-ML classes. We highlight the best two models in bold and underlined.

and sometimes worse than with multispectral S-2 data. No-
tice that TerraMind shows similar performance gaps as CLIP
when comparing NAIP data to S-2 RGB. This indicates that
additional multispectral channels have a comparable effect
on few-shot performance as high-resolution images.

10.3. Finetuning comparisons with baseline models

Since the first approaches to foundation models for Earth
observations, experts in the field discuss on the usability
of such models compared to task-specific models that are
trained for each application individually. Recent benchmark
results suggested that task-specific models, like U-Nets, of-
ten outperform finetuned GFMs [49]. We therefore addition-
ally investigate how TerraMind compares with task-specific
U-Nets and ViT models following the PANGAEA evaluation
protocol in Table 6. As adviced by the authors of PANGAEA,
we again report results on nine of the eleven datasets as we
could not reproduce the performance on the remaining two
datasets. The task-specific models are trained from scratch
for each individual task, while all GFMs including Terra-
Mind are finetuned with a frozen encoder and an UperNet
head. Overall, our results demonstrate that TerraMindv1-B
outperforms task-specific UNet and ViT models across the
PANGAEA benchmark in both unimodal and multimodal
settings by 1pp avg. mloU and 4pp avg. mloU respectively.
In multimodal settings, the improvement peaks to 4.5pp im-
provement of TerraMindv1-B over task-specific U-Nets. To
the best of our knowledge, this is the first time a GFM model
outperforms task-specific models on a global benchmark.

In addition, we observe that for most datasets,
TerraMindv1-B outperforms TerraMindv1-B-single. This
demonstrates the benefit from scaling in the data and feature
dimension—i.e., leveraging dual-scale feature representations
on a pixel level and a token level.

10.4. Comparing generations and pseudo-labels

We evaluate the model generations for modalities where we
used pseudo-labels as input data. For example, in initial ex-
periments with TerraMindv1-B-single, we leverage Google’s
DynamicWorld model to pseudo-label LULC maps which
we use as input to the model. In the following experiment
in Table 12, we test the performance of the DynamicWorld
model against the generations of TerraMind. Overall, we
observe that while finetuned TerraMindv 1-B-single outper-
forms DynamicWorld, the generation of TerraMind does not
surpass the inference results of DynamicWorld.

Approach Input  ToUwater
TerraMindv1-B-single S-2L1C 69.87
Dynamic World pseudo-labeling ~ S-2 L1C 71.98
TerraMindv1-B-single finetuning  S-2 L1C 76.32

Table 12. Results on the Sen1Floods11 test set comparing flood
maps derived from TerraMind’s out-of-the-box LULC generations
to those derived from LULC pseudo-labeling with Dynamic World.
The results are inferior to those obtained by fine-tuning a special-
ized model for this downstream task, which is expected.

10.5. TiM tuning for crop mapping

We further investigate the relevance of TiM tuning for crop
type mapping in order to understand the relevance of gener-
ating artificial data for more finegrained segmentation tasks.
That means, we generate artificial LULC data which in-
cludes agricultural crop as a single class and investigate
whether this additional information helps to segment nine
different types of crops in satellite images. We experiment
with the South Africa Crop Type Mapping dataset (https:
//source.coop/esa/fusion-competition) and
present the results in Table 13. Overall, we observe that
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TiM tuning improves the performance by around 1pp. That
means that even though the generated artificial data does
not include further information on the location and shape
of certain crops, the information on where to expect crop
land in general helps to guide the model to an improved
performance.

Input mloU
TerraMindv1-B S-2 41.87
TerraMindvl-B TiM  S-2 + gen. LULC 42.74

Table 13. Thinking-in-modalities (TiM) tuning compared with stan-
dard full fine-tuning approaches on the SA Crop dataset.

11. Any-to-any generation

In Figure 18, we provide an example of any-to-any gener-
ation on four image-like modalities and two sequence-like
modalities. Overall, we observe that when we start from
modalities with high information content (e.g., fine-grained
image-like modalities), the reconstructions are particularly
good. Even with less information content, the model is able
to generate consistent artificial data. However, we can clearly
observe that the quality compared to the ground truth (rep-
resented by the input in the left of the figure) is decreasing.
Finally, it is interesting to see how artefacts are introduced
by the model when starting from lower information content
in the input. For example, when promting TerraMind to gen-
erate data from DEM input, we observe that the model pays
significant attention to the darker streams in the DEM image,
which are later generated as a river in LULC.

While we expect to see accurate generations from
information-rich modalities like optical data, it is partic-
ularly interesting to understand how TerraMind deals with
low information content. Therefore, we prompt TerraMind to
generate a subset of modalities starting from the geolocation
in Figure 17. Interestingly, for a geolocation from the middle-
east, the model generates an optical image that resembles
a desert. While the generated optical image is based on the
right context, the actual structure is unsurprisingly different
from the ground truth. Based on the chained generation, this
difference ripples down across all other modalities as well
causing consistent but inaccurate generations. This exam-
ple emphasizes the relevance of access to information-rich,
fine-grained features to facilitate accurate generations.

Next to the evaluation of raw, pixel-level input in Table 3,
we further evaluate the generation quality using tokenized
input in Table 14. Interestingly, we observe only minor re-
duction in performance compared to pixel-level input even
though the tokenized representations are compressed sig-
nificantly (up to 3000x for S-2 L2A). Overall, our results
suggest that leveraging tokenized inputs can be a reasonable
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Figure 17. Randomly selected chained generation example with
uni-modal geo-location input data. Top row is artificially generated
data by TerraMind, buttom row represents a ground truth sample at
this grid location, respectively.

alternative to leveraging pixel-level data for the generation
of artificial data with TerraMind.

11.1. Large-scale generations

In Figures ?? and ??, we provide additional qualitative re-
sults for large-tile generations at the example of Singapore.
Specifically, we leverage a 35.5km x 69.5km optical S-
2 L2A tile as input and iteratively generate overlapping
224x224 pixel generations for S-1 RTC, S-1 GRD, NDVI,
and LULC. In the overlapping areas, we apply the mean of
all generations in order to enhance the spatial conciseness of
the generations. TerraMind consistently removes the clouds
in the S-1 generations. It makes assumptions for hidden ar-
eas, which are look accurate for large features like water
bodies or the shore line. Other features like airports or ships
are also clearly visible in the S-1 and NDVI generations.



Raw Input Sentinel-2 L2A  Sentinel-1 GRD LULC DEM Caption Coordinates

The image is a satellite
view of a landscape

Z| ,, that includes a variety
:: - of land uses such as 33°15'N
farmland, agriculture,
\ \~ and natural features 130°00'E

like a river or stream.
The image also shows a
cemetery, a park, ...

Generation

APNS
g
g \"

Generation

The image is a satellite
view of a developed
area with various feat-
ures such as residen- 34°45'N
tial, commercial, and
recreational spaces. 127°45'E
The area includes a
large lake, parks, and a
school. The image ...

The image is a satellite
view of a diverse lands-
cape, featuring a

mountain peak, a large 3 50151 N
stadium, a waterway,
and various other land 128°45'E

uses such as residen-
tial, commercial, and
agricultural areas. ...

¥ " Y
‘
|

The image is a satellite
view of a developed
area with a mix of

industrial, agricultural, 33°45'N
and natural features. It
includes a river, farm- 112°15'E

land, a school, a park,
and a forest. The image
providesa ...

Figure 18. Any-to-any generation example of TerraMindv1-B-single. Fine-grained input like optical and radar achieve particularly good
performances.

The image is a satellite
view of a landscape
that includes ariver, a

waterway, a tennis 36°00'N
court, a hospital, a
park, and various other 139°30'E

land uses. The image
provides a comprehen-
dsive view of the ...
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The image is a satellite
view of a landscape
that includes a river, a
pond, a pond, and
various types of land
cover. The image is
detailed and provides a
detailed view of the
naturaland ...

Generation

B

Modalities MAE RMSE SSIM PSNR

Tokenized S-2 L2A — S-1 GRD 3.3180 4.3309 0.5131 27.715
Tokenized S-2 L2A — S-1 RTC ~ 3.0544 39178 04131 27.739
Tokenized S-2 L2A — DEM 572.5 1040.6 0.5728 17.718

Tokenized S-1 GRD — S-2 L2A  0.0820 0.1238 0.7182 25.630
Tokenized S-1 GRD — NDVI 0.1949 0.2425 0.4124 18.324
Tokenized S-1 GRD — DEM 3274 5503 0.7271 16.008

Tokenized S-1 RTC — S-2L2A  0.1195 0.1935 0.6638 24.266
Tokenized S-1 RTC — NDVI 0.1895 0.2348 0.4500 18.606
Tokenized S-1 RTC — DEM 4579  851.6 0.7095 19.457

Table 14. Performance of TerraMind on tokenized inputs using 10 diffusion steps. Metrics include MAE |, RMSE |, PSNR 1, and SSIM 1.



(b) Generation: TerraMind output for S-1 composition

Figure 19. Large-tile generations of TerraMind for Singapore (1/1)



(c) Generation: TerraMind output for LULC

Figure 19. Large-tile generations of TerraMind for Singapore (2/2)



0 de Compostela.

L2A data from Santiag

2

(a) Input: S
(b) Generation: TerraMind output for S-1 GRD composition

~
(s
~
—
~
<
_—
Q
-
17}
&
g
o}
O
Q
o
o
on
<
=
=}
<
w2
S
o=
=
(=}
..Ml
<
5
=
G
o
%)
=}
=}
=
s
=
Q
=
[
o0
L]
—_
=
1
0]
£
<
—
S
N
ot
=
=
o0
o
(S




(d) Generation: TerraMind output for vegetation

Figure 20. Large-tile generations of TerraMind for Santiago de Compostela (2/3)
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(e) Generation: TerraMind output for digital elevation

Figure 20. Large-tile generations of TerraMind for Santiago de Compostela (3/3)
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