Identity-aware Language Gaussian Splatting for Open-vocabulary 3D Semantic
Segmentation

Supplementary Material

1. Introduction

In this supplementary material, we provide additional ex-
planations of the proposed method. First, details of the data
preprocessing and the training procedure are described in
Section 2. Further ablation study on the progressive mask
expanding scheme is presented in Section 3. Finally, addi-
tional qualitative results with the discussion are presented
in Section 4.

2. Implementation Details

2.1. Data Preprocessing

Following the previous method [6], we use SAM [4] to seg-
ment objects in images and CLIP to extract language fea-
tures for each segmented region. To reduce memory costs,
we use an autoencoder to compress high-dimensional CLIP
features into 3 dimensions. CLIP features derived from
each segment mask are assigned to their corresponding pix-
els. This process results in a CLIP feature map with dimen-
sions (3,H,W). Additionally, we use DEVA [1] to generate
coherent identity labels. DEVA is a zero-shot tracker that
ensures consistent identity labels for objects across multi-
ple views. These processed data are used to train language
and identity embeddings.

2.2. Training

Implementation details of end-to-end training. Our
method is based on the official implementations of
3DGS [2] and Gaussian Grouping [8]. Specifically, we aug-
ment each Gaussian with both language and identity em-
beddings. While we use the same type of identity embed-
dings in [8], the proposed method utilizes them differently
to maintain multi-view consistency of language features.
In contrast to previous approaches [6, 7] that pre-train a
3DGS [2] algorithm and then incorporate language embed-
dings in a separate stage, we design an end-to-end frame-
work where Gaussian attributes, language embeddings, and
identity embeddings are jointly trained. Our setting for
learning rates is shown in Table 1. Both language and
identity embeddings are rasterized through a differentiable
rasterizer. Rasterized identity features pass through MLP,
which applies the softmax function to produce per-class
probability values. Identity embeddings are trained by using
the cross-entropy between per-class probability values and
coherent identity labels. Language embeddings are trained
by using L1 loss between rasterized language feature maps
and CLIP features. In subsection 3.2 of the manuscript, we

Parameter Learning Rate
Position 1.6 x 1074
Opacity 5.0 x 1072
Scaling 5.0 x 1073
Rotation 1.0 x 1073
Identity embedding 2.5 x 1073
Language embedding 2.5 x 1073

Table 1. Learning rates for Gaussian attributes and each embed-
ding.

set M = 800 and N = 5 for the identity-aware seman-
tic consistency loss. Here, M represents the total number
of Gaussian components selected to model the identity dis-
tribution. N denotes the number of pair-wise comparisons
performed for each Gaussian.

Effect of outlier filtering. In the proposed method, we ap-
ply the outlier filtering scheme, which stabilizes the opti-
mization process of identity embeddings by providing re-
liable identity labels. During training, the outlier filtering
scheme automatically excludes any incorrect identity labels
that occur in certain views. As a result, identity embeddings
can be trained with labels accurately assigned from other
views. As shown in Fig. 1, the initial rasterized identity
map contains noise, which gradually decreases as iterations
progress.

Similarity margin ‘ mloU (%) Boundary IoU (%)
5% 74.4 69.2
10% 80.5 76.0
15% 75.0 70.6
20% 74.2 69.6
25% 66.8 61.6

Table 2. Performance analysis of the proposed method based on
changes in progressive mask expanding on the LERF dataset (the
best result are shown in bold).

3. Ablation study

Progressive mask expanding. In subsection 3.3 of the
manuscript, we describe a progressive mask expansion ap-
proach, where each neighboring segment is added when its
cosine similarity differs from the similarity of the seed seg-
ment by less than 10% of the seed value. We compare the
similarity margin of {5%, 10%, 15%, 20%, 25%} on the



iteration

Figure 1. Visualization of rasterized identity feature map during training.

LERF [3] dataset and evaluate both mloU and boundary
ToU. As shown in Table 2, the 10% threshold achieves the
best overall performance on the LERF [3] dataset. There-
fore, we adopt 10% as our default similarity margin.

4. More Results and Limitations

4.1. Qualitative Results

Additional examples of open-vocabulary 3D semantic seg-
mentation are shown in Figs. 2 and 3. As can be seen, the
proposed method successfully generates semantic masks in
novel views. Note that our method consistently produces
accurate segmentation results in both simple and complex
scenarios.

4.2. Limitations

Our method leverages coherent identity labels generated
by a zero-shot tracker, which may introduce inaccuracies
of labels in complex scenes. Although the outlier filter-
ing scheme helps mitigate this issue, the quality of identity
tracking impacts overall performance. The current imple-
mentation focuses on static scenes, thus it may face chal-
lenges in dynamic environments where objects move or
change appearance over time. The extension of our ap-
proach to handle temporal consistency in dynamic scenes
remains for future work.
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Figure 2. More results of open-vocabulary 3D semantic segmentation by the proposed method on the 3D-OVS [5] dataset.
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Figure 3. More results of open-vocabulary 3D semantic segmentation by the proposed method on the LERF [3] dataset.



