Sparfels: Fast Reconstruction from Sparse Unposed Imagery
— Supplementary material —

Shubhendu Jena®, Amine Ouasfi*, Mae Younes, Adnane Boukhayma
Inria, Univ. Rennes, CNRS, IRISA

1. Evaluation of Novel View Synthesis and
Camera pose estimation

In this section, we provide qualitative and quantitative com-
parisons on the Tanks and Temples [11], MipNeRF360 [2]
datasets and MVImgNet [19] datasets for both novel view
synthesis and camera pose estimation metrics. Tab |
presents quantitative results for these experiments on Mip-
NeRF360 [2] and MVImgNet [19] with qualitative results
presented in Fig | and Fig 2. For Tanks and Temples [11],
quantitative and qualitative results are reported in Tab 2 and
Fig 3 respectively. We observe that NoPe-NeRF [3] and
NeRF-mm [16] suffer markedly in their novel view perfor-
mance and camera pose estimation metrics. Being implicit,
volumetric rendering methods, they also suffer from slow
training and inference times. CF-3DGS [8] also encounters
artifacts when rendering from novel viewpoints, stemming
from its complex optimization pipeline and erroneous pose
estimations. InstantSplat [5, 6] variants provide good per-
formance, but still lag behind our method in most metrics,
particularly in the challenging 3-view setting. For the Tanks
and Temples comparison in Tab 2, Fig 3, we also outper-
form SPARF [14] by a sizeable margin on all metrics, while
requiring order of magnitudes less training and inference
time, since it takes around 10 hours to train on a single scene
and needs more than a minute to render a single image dur-
ing inference, owing to its volumetric rendering framework.
Our method significantly outperforms all baselines on vari-
ous datasets in terms of SSIM, LPIPS (novel view synthesis
metrics) and ATE (camera pose estimation metric), demon-
strating its robustness to complex scenes with challenging
lighting conditions.

Method

SSIM (MVImgNet) LPIPS (MVImgNet) ATE (MVImgNet) | MipNeRF360 (12 Training Views)
few Gview  I2-view | 3-view  G-view  I2-view | 3-view  Gview 12-view | SSIM__PSNR__LPIPS ATE |
NoPe-NeRF [3] 04326 04329 04686 | 0.6168 06614 06257 | 02780 0.1740 ~0.1493 | 03580 1616 0.6867 02374
CF-3DGS [8] 03414 03544 03655 | 04520 04326 04492 | 01593 0.1981 0.1243 | 02443 1317 0.6098 02263
03752 03685 03718 | 0.6421 06252 0.6020 | 02721 02376 01529 | 02003 1153 07238 02401

6] 05489 06835 07050 | 03941 02980 03033 | 0.0184 00259 00165 04647 17.68 05027 02161
.61 05628 06933 07321 | 03688 02611 02421 | 0.0184 00259 00164 04398 1723 04486 02162
0.8313 08801  0.9008 | 02215 0.1658 01410 | 0.0273 00244 00172 08168 2621 02199 0.2067

Table 1. NVS performance comparison of different methods on
MVImgNet and MipNeRF360

*Equal contribution.

Method SSIMT LPIPS| ATE]

3-view  6-view 12-view | 3-view 6-view 12-view | 3-view 6-view 12-view
COLMAP +3DGS [10] | 0.3755 0.5917  0.7163 | 0.5130 0.3433  0.2505 - - -
COLMAP +FSGS [21] | 0.5701 0.7752  0.8479 | 0.3465 0.1927  0.1477 - - -
NoPe-NeRF [3] 0.4570  0.5067  0.6096 | 0.6168 0.5780  0.5067 | 0.2828 0.1431  0.1029
CF-3DGS [8] 0.4066  0.4690  0.5077 | 0.4520 0.4219 04189 | 0.1937 0.1572  0.1031
NeRF-mm [16] 0.4019  0.4308  0.4677 | 0.6421 0.6252  0.6020 | 0.2721 02329  0.1529
SPARF [14] 0.5751 0.6731  0.5708 | 0.4021 03275  0.4310 | 0.0568 0.0554  0.0385
Instantsplat-S [6] 0.7624 0.8300 0.8413 | 0.1844 0.1579 0.1654 0.0191 0.0172 0.0110
Instantsplat-XL [6] 07615 0.8453  0.8785 | 0.1634 0.1173 0.1068  0.0189 0.0164 0.0101
Ours 0.8752  0.9020 0.9180 | 0.1623 0.1283  0.1050  0.0150 0.0174  0.0078

Table 2. Performance comparison of different methods across
SSIM, LPIPS, and ATE metrics for 3-view, 6-view, and 12-view
settings on the Tanks and Temples dataset.
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Figure 1. Qualitative comparison of novel view synthesis on
MipNeRF360 dataset from 12 input images.

2. Additional qualitative comparison on 3D re-
construction

We also provide a qualitative comparison in Fig. 4 to
SpaRP [17] on the DTU [1] dataset, a recent method that
leverages 2D diffusion models for efficient 3D reconstruc-
tion and pose estimation from unposed sparse-view images.
For comparison using 3 input images, our method achieves
mesh reconstructions with greater fidelity to the input im-
ages, as seen in the comparisons. We also provide video
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Figure 2. Qualitative comparison of novel view synthesis on
MVImgNet dataset from 3 input images.
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Figure 3. Qualitative comparison of novel view synthesis on
Tanks and Temples dataset from 3 input images.

results depicting our reconstructions and novel view results
on the DTU [1] and BlendedMVS [18] datasets and their
comparison to other methods.

3. Color variance plot

We plot the average color variance over optimization itera-
tions (Fig. 5) for models w/ and w/o variance loss. Mod-
els with the loss activated effectively maintain lower color
variance consistently, which aligns with our goal of encour-
aging stable, low-uncertainty renderings. This supports the
effectiveness of the proposed loss in guiding convergence
toward robust geometry.

4. Alternative priors

This example (Fig. 6) demonstrates that initializing our
framework with VGGT [15], a recent state-of-the-art feed-
forward method that avoids the global optimization step of
MASt3R [12] also produces successful results. This high-

Figure 4. Qualitative comparison with SpaRP [17] on DTU
dataset from 3 input images.
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Figure 5. Color variance. The variance loss keeps color variance
lower, encouraging stable, robust convergence.

lights the modularity of our approach and its compatibility
with different geometric priors.

5. Variance loss motivation

Our goal is to hedge against epistemic uncertainty in geom-
etry estimation inherent to the unposed surface reconstruc-
tion problem. Under sparse-view supervision, the render-
ing objective admits many geometries that fit the training
images but generalizes poorly (see Sec.3 in [20]). This is-
sue is exacerbated when camera poses are optimized dur-
ing training, introducing additional noise into the supervi-
sion. In Gaussian Splatting, scene geometry is encoded
through splat parameters defining the 3D density. Among
the many plausible geometries, we seek to bias the model
toward those that remain predictive even under small per-
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Figure 6. Alternative prior. VGGT initialization shows success-

ful results (3 input images), demonstrating our framework’s mod-
ularity.

turbations, i.e. robust solutions less sensitive to noisy super-
vision signals. To formalize this, we minimize the worst-
case deviation in rendered color under perturbations to the
geometric density field (Eq. 8), yielding a variance regu-
larization loss (Eq. 10) that penalizes color variance along
rays. From a learning-theoretic perspective, this can be in-
terpreted as seeking flat minima [9] in the space of densities,
an idea supported by arguments from both statistical and
deep learning viewpoints, and shown to be effective across
a range of machine learning applications [4, 7, 9, 13]. Em-
pirically, this leads to more stable and consistent reconstruc-
tions from sparse views (Fig. 5, Tab. 4).

6. Prior failures

The example below illustrates a typical scenario where
MASt3R’s [12] feed-forward geometry prediction strug-
gles: reconstruction from only 6 images without known
camera poses. Challenging regions such as texture-less
surfaces, highly reflective materials (e.g., glass doors and
shiny faucets), and thin structures often lead to noisy or in-
complete results. In contrast, our method recovers plausi-
ble geometry in these cases thanks to robust test-time opti-
mization, which refines both the pose and the reconstructed
shape despite imperfect initializations.

-
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Figure 7. Robustness to MASt3R failure (3 input images). Our
method recovers geometry where MASt3R struggles.
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