
Exploiting Domain Properties in Language-Driven Domain Generalization for
Semantic Segmentation

Supplementary Material

6. Details of the Baseline Losses
Our baseline [36] exploits two type of losses: Lseg for
learning semantic segmentation task learning, Lreg for reg-
ularization to maintain visual and textual knowledge of the
pretrained model. Specifically, Lseg is formulated as fol-
lows:

Lseg = Lcls + λbceLbce + λdiceLdice, (4)

where λbce and λdice are weight coefficients of their corre-
sponding losses. Lcls is a classification loss for the class
predictions ĉq , and both Lbce and Ldice losses are binary
cross-entropy loss and dice loss for the mask predictions
ŷmask. The outputs of each queries are matched to the
ground truth class and mask through the fixed matching.

In addition, Lreg is computed as follows:

Lreg = LL
reg + LV L

reg + LV
reg, (5)

where LL
reg , LV L

reg , and LV
reg refers to language regulariza-

tion, vision-language regularization, and vision regulariza-
tion, respectively. Each loss is derived as follows:

LL
reg = Cross-Entropy(Softmax(t̂T̂⊤

0 , IK)), (6)

LV L
reg = Cross-Entropy(Softmax(S/τ), y), (7)

LV
reg = |vCLS − vCLS

0 ∥2. (8)

Specifically, LL
reg encourages the text feature t to follow

a text feature T0 effective for semantic segmentation task
which is obtained with the fixed prompt template ‘a clean
origami of a {classk}’ [31]. The loss matches the cosine-
similarity matrix t̂T̂⊤

0 with the K-dimensional identity ma-
trix IK via the cross-entropy loss. Secondly, LV L

reg enhances
the alignment of the visual feature v = ENCI(x) and text
feature t by matching the score map S = v̂t̂⊤ with the
ground-truth segmentation map y. v̂ indicates the normal-
ized visual feature and τ denotes a temperature coefficient.
Lastly, LV

reg contributes to preserving visual knowledge of
the VLM during training by minimizing the discrepancy be-
tween class tokens vCLS and vCLS

0 which are obtained from
the training backbone and the frozen one, respectively.

Notably, our proposed domain-aware context prompt
learning and domain-robust consistency learning are effec-
tively combined with the baseline objectives, significantly
improving the overall performance for DGSS task.

7. Hyperparameter Analysis
The quantitative analyses on hyperparameters λcontra, λcons,
λtau are provided in Tab. 6, which are weighting factors of

Models (GTAV) Parameter Cityscapes BDD Mapillary Avg.

Baseline - 57.5 47.66 59.76 54.97

DPMFormer

λcontra = 0.1 57.95 49.97 61.03 56.32
λcontra = 0.5 58.22 50.00 61.00 56.41
λcontra = 1 59.00 51.80 63.62 58.14
λcontra = 10 58.21 50.19 61.64 56.68

λcons = 1 57.54 48.91 60.94 55.80
λcons = 5 58.10 49.48 61.20 56.26
λcons = 10 59.00 51.80 63.62 58.14
λcons = 50 59.08 49.82 62.03 56.98

τ = 0.1 58.50 50.86 62.53 57.30
τ = 0.5 59.00 51.80 63.62 58.14
τ = 1 58.58 50.05 61.94 56.86
τ = 2 56.81 49.52 60.83 55.72

Table 6. Hyperparameter analysis on synthetic-to-real scenarios
with CLIP backbone (ViT-B).

Lcontra, Lcons, and a temperature scaler in Lcontra. We note
that we empirically set these hyperparameters for the bal-
anced optimization of all training losses. The best perfor-
mance is obtained when λcontra, λcons, λtau are set as 1.0, 5.0,
0.5, respectively. Excessively reducing or increasing the
weighting factors resulted in marginal improvements over
the baseline. The temperature parameter τ achieved opti-
mal performance at 0.5, adequately reducing the entropy of
output distribution in the similarity matrix, thereby facilitat-
ing loss convergence.

8. Model Performance on Diverse Corruptions

Method Blur Noise Digital Weather Elastic Transform Average

TQDM [36] 39.40 20.24 52.56 46.03 73.50 42.02
DPMFormer 40.08 18.75 53.57 48.85 73.04 42.72

Table 7. Quantitative evaluation on Cityscapes-to-Cityscapes-C
with corruption level 5.

We present the model performance on Cityscapes [7]-to-
Cityscapes-C [16] with corruption level 5 in Tab. 7 with the
CLIP pretrained backbone (ViT-B). We group corruptions
into Blur, Noise, Digital, Weather, and Elastic Transform.
As described, DPMFormer surpasses another language-
driven DGSS method [36] especially against blur, digital,
and weather corruptions that induce a large texture changes.

9. Domain Generalization for Image Classifica-
tion

In Tab. 8, we evaluate DPMFormer on multi-source do-
main generalization benchmarks [2, 29, 48, 52] with CLIP



Method PACS VLCS Office-Home Terra

ZS-CLIP [41] 90.7 ± 0.0 80.0 ± 0.0 70.8 ± 0.0 23.8 ± 0.0
CoCoOp [63] 91.9 ± 0.6 81.8 ± 0.3 73.4 ± 0.4 34.1 ± 3.0
DPL [60] 91.8 ± 0.7 80.8 ± 0.8 73.6 ± 0.4 34.4 ± 1.0
SPG [1] 92.8 ± 0.2 84.0 ± 1.1 73.8 ± 0.5 37.5 ± 1.8
DPMFormer 91.5 ± 0.3 81.5 ± 1.0 73.9 ± 0.4 35.0 ± 2.1

Table 8. Comparisons on image classification DG methods.

ResNet50 backbone. Following conventions, the evalua-
tion is conducted in the leave-one-domain-out manner and
we report the average domain accuracy of the model se-
lected using the training-domain validation set method. In
summary, DPMFormer achieves performance comparable
to previous prompt learning methods for image classifi-
cation [1, 60]. In particular, we achieve the best perfor-
mance on Office-Home [52], and surpass CoCoOp [63] and
DPL [1] on Terra-Incognita [2].

We note that existing prompt learning studies for im-
age classification [1, 60] are not suitable for the single-
source setting of DGSS, as they either require multiple
source datasets [60] or depend on multi-stage training and
adversarial learning [1] to obtain prompts. In contrast, our
domain-aware prompt generation requires image transfor-
mations and a contrastive objective, making it more effec-
tive for semantic segmentation tasks.

10. Computational Overhead
With DPMFormer, each training iteration takes 1.712 sec-
onds, slightly more than the baseline’s 1.501 seconds.
Meanwhile, its inference time of 1.376 seconds per batch
remains comparable to 1.004 seconds of the baseline. The
batch size is reduced by half due to texture perturbation, but
still maintains better performance under the same training
setting.

11. Class-wise Quantitative Comparison
Through Tab. 9 to Tab. 13, we compare class-wise IoU of
DPMFormer with TQDM [36] with the CLIP initialized
models. Noticeably, DPMFormer demonstrates higher per-
formance in most classes in various scenarios and shows
comparable score even in other cases. In summary, the aver-
age IoU consistently outperforms the competitor, verifying
the superiority of DPMFormer in DGSS.

12. Precision-Recall Curve Comparison
In Fig. 6 and 7, we depict Precision-Recall curves of
each class with Averaged Precision (AP) in synthetic-to-
real scenario (GTA [42]-to-BDD [58]) with CLIP (ViT-
B) and EVA02-CLIP backbones, respectively. Compared
to TQDM [36], DPMFormer shows better performance in
most classes, validating the effectiveness of domain-aware
context prompt learning as well as consistency learning.

13. Limitation and Future Work
Domain-aware context prompt learning utilizes the global
representation of the frozen backbone to obtain domain-
specific properties of the image. However, some local tex-
tures may differ from the global textures in complex scenes.
For example, in night driving scene, the roads are bright-
ened due to car headlights, whereas the sky and surround-
ings are darkened. Hence, exploiting local texture patterns
for more detailed prompt generation can be a good ini-
tial motivation for future language-driven DGSS. In addi-
tion, the design of the domain-aware prompt generator hθ

and textural perturbations can be further advanced to ac-
complish better performance. Meanwhile, the unshared la-
bel space between the source and the target domain hin-
ders the model from correctly interpreting the image con-
text. From this perspective, we believe addressing DGSS
through open-set domain adaptation and the integration of
VLM should be a promising direction for future research.

14. Additional Qualitative Results
Through Fig. 8 to Fig. 12, we provide additional qualitative
results of DPMFormer in various scenarios. DPMFormer
consistently yields more accurate segmentation results than
TQDM [36] in scenes under diverse environments and from
various locales.



Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Avg

TQDM 90.97 50.91 88.24 36.52 38.54 47.76 54.82 45.78 89.10 40.78 89.67 74.33 40.46 85.73 39.41 60.69 46.71 29.85 47.84 57.79
Ours 87.92 46.60 88.19 38.83 39.37 47.27 54.90 49.24 89.11 40.49 89.52 74.90 43.08 88.11 54.42 55.95 35.72 44.16 53.15 59.00

Table 9. Class-wise quantitative comparison (IoU) in synthetic-to-real (GTA [42]-to-Cityscapes [7]) scenario with the CLIP-pretrained
ViT-B backbone.

Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Avg

TQDM 88.76 48.75 79.85 22.46 30.48 41.94 45.72 39.35 75.04 40.69 88.11 58.43 26.54 80.00 32.39 43.10 0.00 44.99 33.26 48.41
Ours 90.79 49.72 81.38 29.56 34.65 41.68 47.03 42.66 75.82 42.24 88.30 59.72 32.23 84.04 37.49 61.20 0.00 50.12 35.61 51.80

Table 10. Class-wise quantitative comparison (IoU) in synthetic-to-real (GTA [42]-to-BDD [58]) scenario with the CLIP-pretrained ViT-B
backbone.

Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Avg

TQDM 89.93 54.28 85.24 41.74 43.44 51.80 56.93 67.24 79.36 50.58 94.27 75.94 56.34 86.62 51.80 54.65 19.76 57.79 41.03 60.99
Ours 90.20 58.33 85.42 43.19 45.21 51.57 56.36 68.49 79.91 51.64 94.39 75.28 56.10 88.70 59.99 61.80 32.77 62.89 46.65 63.35

Table 11. Class-wise quantitative comparison (IoU) in synthetic-to-real (GTA [42]-to-Mapillary [34]) scenario with the CLIP-pretrained
ViT-B backbone.

Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Avg

TQDM 92.55 56.65 83.66 24.37 33.93 42.44 46.87 48.22 84.02 45.68 93.80 58.51 28.42 86.90 38.87 38.8 0.27 37.23 26.90 50.95
Ours 92.76 57.68 83.83 28.73 39.57 45.04 49.91 51.20 83.96 44.53 93.78 62.57 40.21 87.37 40.15 47.95 0.29 53.07 38.78 54.81

Table 12. Class-wise quantitative comparison (IoU) in real-to-real (Cityscapes [7]-to-BDD [58]) scenario with the CLIP-pretrained ViT-B
backbone.

Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Avg

TQDM 90.66 53.19 87.34 48.39 54.05 51.64 58.57 73.51 83.93 53.16 94.64 74.39 61.32 89.62 58.58 56.80 21.92 58.84 56.87 64.60
Ours 90.65 52.88 86.99 48.84 57.20 54.03 61.57 76.29 88.21 53.30 97.10 77.04 65.38 90.45 62.03 66.30 24.87 68.04 65.51 67.72

Table 13. Class-wise quantitative comparison (IoU) in real-to-real (Cityscapes [7]-to-Mapillary [34]) scenario with the CLIP-pretrained
ViT-B backbone.



Figure 6. Precision-Recall curve and Average Precision (AP) on synthetic-to-real scenario (GTA [42]-to-BDD [58]) with the CLIP-
pretrained backbone (ViT-B).



Figure 7. Precision-Recall curve and Average Precision (AP) on synthetic-to-real scenario (GTA [42]-to-BDD [58]) with the EVA02-
CLIP [45] pretrained backbone.



Input TQDM [36] Ours GT

Figure 8. Qualitative comparison on synthetic-to-real scenario (GTA [42]-to-Cityscapes [7]) with the CLIP-pretrained backbone (ViT-B).
With the first image, TQDM [36] mispredicts sidewalk as roads and shows confusion on the region next to the bicycle rider. TQDM also
confuses the car with the truck (second row) and misclassify bicycles as motorcycles (third row). On the other hand, DPMFormer produces
more reliable and accurate segmentation results in these scenes.

Input TQDM [36] Ours GT

Figure 9. Qualitative comparison on synthetic-to-real scenario (GTA [42]-to-BDD [58]) with the CLIP-pretrained backbone (ViT-B). Due
to the large illumination contrast caused from the intense sunlight (first row), TQDM [36] wrongly mark the buliding as a train. In addition,
TQDM perplexes the road as ‘car’ and ‘sidewalk’ due to their textural similarity. Contrarily, DPMFormer shows consistent performance
under various environments, almost reaching ground-truth segmentation maps.



Input TQDM [36] Ours GT

Figure 10. Qualitative comparison on synthetic-to-real scenario (GTA [42]-to-Mapillary [34]) with the CLIP-pretrained backbone (ViT-B).
TQDM [36] confounds road as sidewalk or car because of the textual changes gap from the synthetic texture. Conversely, DPMFormer
predicts accurately by utilizing domain-aware context prompt and the domain-robust cues learned from consistency losses.

Input TQDM [36] Ours GT

Figure 11. Qualitative comparison on real-to-real scenario (Cityscapes [7]-to-BDD [58]) with the CLIP-pretrained backbone (ViT-B). In
the first image, TQDM mispredicts the car and the bus due to the occlusion. In case of the nighttime (second row) and the daytime (third
row) scenes, predictions gets noisy due to the textural ambiguity. As shown in the last row, TQDM fails to catch traffic signs which
have different design from the Cityscapes dataset. DPMFormer demonstrates its efficacy by producing more precise segmentation results
compared to TQDM.



Input TQDM [36] Ours GT

Figure 12. Qualitative comparison on real-to-real scenario (Cityscapes [7]-to-Mapillary [34]) with the CLIP-pretrained backbone (ViT-B).
Due to the location difference between the datasets, TQDM miss traffic signs (first row) and misclassify the walls (second row) and the
road (third row). Also in the clean daytime image (fourth row), fallacious predictions are observed in the sky and infront of the car on the
right side. On the other hand, DPMFormer generates clean and reliable predictions among these images.


