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A. Additional Explanation on Our Attack
A.1. Attention disruption Attack

Algorithm. The full procedure of attention disruption attack is summarized in Algorithm 1.

Algorithm 1: Adversarial loss in cross attention.
Input: perturbation δ, query embedding Qx, original source face embedding Kx, adversarial source face embedding

K(x+δ), low variance threshold tvar, maximum variance value σmax, low variance mask Mvar, attention loss
Lattn, attention loss function F

Result: stored low-variance mask Mvar, added attention loss Lattn
1 if Mvar is not precomputed then

// Construct Ground Truth

2 Compute original attention map: Amap ← Softmax(QxK
T
x /
√
d)

3 Compute variance: Avar ← Var(Amap)
4 Calculate low-variance threshold: Ptvar ← Quantile(Avar, tvar)
5 Generate low-variance mask: Mvar ←Mask(Avar, Ptvar)
6 Store Mvar for applying adversarial noise
7 end
8 else

// Compute Adversarial Loss

9 Compute adversarial attention map: A′
map ← Softmax(QxK

T
(x+δ)/

√
d)

10 Compute variance: A′
var ← Var(A′

map)

11 Calculate attention loss in low-variance regions: Lattn ← Lattn + F(∆),
where ∆ = (σmax −A′

var)⊙Mvar

12 end
13 Subsequent steps are not shown here.

A.2. MTCNN Attack

Model architecture.
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Figure 1. MTCNN model architecture overview.

The Multi-task Cascaded Convolutional Neural Network (MTCNN) is a deep learning-based framework for face detection
and facial landmark localization. Its architecture consists of three cascaded convolutional neural networks, each refining face
candidates while ensuring computational efficiency (see Fig.1). The Proposal Network (P-Net) employs a sliding window
to scan the input image, generating bounding box proposals and associated confidence scores. Non-maximum suppression
(NMS) is applied to remove redundant proposals. The Refine Network (R-Net) filters the bounding boxes further, reducing
false positives and improving localization accuracy. Finally, the Output Network (O-Net) refines the bounding boxes and pre-
dicts precise facial landmark locations for face alignment. A key strength of MTCNN lies in its multi-scale input processing
strategy. By resizing the input image across multiple scales, the network effectively captures faces of varying sizes, ensuring
robust detection under diverse scenarios. This approach enables the P-Net to detect both large and small faces within a single
pipeline, generating a comprehensive set of bounding box proposals. The cascaded structure leverages these multi-scale can-
didates, progressively refining them to achieve high detection accuracy and precision, even in complex scenes with occlusions
or extreme pose variations.
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Figure 2. MTCNN Attack Overview. The attack process on MTCNN consists of three parts: (i) Selecting the scaling factor si, where
the scale value is chosen according to Eq.1; (ii) Image resizing process, where we extend the robustness of resizing modes by using both
Bilinear interpolation and our proposed Area-based method; (iii) P-Net attack, which decreases the probability values of candidate scales.

Details of the scaling factor selection process. MTCNN uses a multi-scale approach for face detection, which motivates us
to extend the robustness of our adversarial noise across different scaling factors. To achieve this, we calculate the loss over
multiple scales by dividing the image into several scales (see Fig.2). The process of selecting the optimal scaling factor is
as follows: Initially, we calculate the minimum bounding box size Dland that encompasses key facial landmarks (eyes, nose,
mouth) in the input image, obtained by passing the original image through MTCNN. Suitable scale values si are chosen
to adjust the initial bounding box size Dcell to be larger than Dland, while ensuring that the scaled input image size Dadv

remains greater than the minimum allowable size Dmin. This is mathematically expressed as:

Scales =

{
si

∣∣∣∣∣ si ·Dland ≤ Dcell, si ·Dadv ≥ Dmin

}
(1)

where si is defined as si = Dcell

Dmin
× ki−1, with k being a predefined scale factor and i a non-negative integer. This ensures

that only bounding boxes reaching MTCNN’s final layers are effectively targeted.
Algorithm. The image resizing process and the P-Network attack method are summarized in Algorithm 2.

Algorithm 2: Adversarial loss in MTCNN Attack.
Input: source face image x, perturbation δ, probability threshold tprob, image resize scale set Scales, mtcnn P-Network

T , mtcnn loss Lmtcnn, mtcnn loss function F
Result: added mtcnn loss Lmtcnn

1 Update input image with perturbation: xadv ← x+ δ
2 Get input image size: Dadv ← Shape(xadv)
3 Set kernel and stride sizes: K,S ← Dadv

4 for si in Scales do
5 Set scaled image size: Dscl ← si ×Dadv

6 Compute intermediate image size: Dint ← Dadv ⊙Dscl

7 Upscaling image by using NEAREST: x̂adv ← Scale(xadv, Dint)
8 Apply average pooling: x̃adv ← Pool(x̂adv,K, S)
9 Obtain bbox probability: PT, PF ← T (x̃adv)

10 Generate high-probability mask: Mprob ←Mask(PT, tprob)
11 Calculate mtcnn loss in mask region: Lmtcnn ← Lmtcnn + F(∆),

where ∆ = (T (x̃adv)− pgt)⊙Mprob

12 end
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B. Additional Related Work

Deepfake adversarial attack. Existing research on adversarial attacks against deepfakes has focused on two main ap-
proaches: one involves targeting deepfake models based on the structural properties of specific GANs, and the other focuses
on facial feature extractors to attack multiple deepfake models that use them. Studies such as [11, 26, 36] have focused on
degrading the quality of images by targeting various GANs [5, 10, 16, 32, 43]. However, these approaches are ineffective
against DM-based models [14, 33, 42]. As a study that attacks facial feature extractors, [17] performs adversarial attacks on
several face landmark models [23, 35, 39], although the extractors targeted in this study are now less commonly used. [13]
disrupt face detection targeting the MTCNN model by applying specific patches, but this approach has the limitation of being
visible. Another method attacking the same model, [40], propose using BILINEAR interpolation to attack across multiple
scales. However, since the BILINEAR mode only uses specific anchor points during interpolation, adversarial noise generated
with this approach easily loses effectiveness when other interpolation modes are applied.
Diffusion adversarial attack. As image editing techniques utilizing DMs have gained traction, research on adversarial
attacks targeting these architectures has progressed significantly. AdvDM [19] generates adversarial examples by optimizing
latent variables sampled from the reverse process of a DM. Similarly, Glaze [29] investigates the latent space, generating
adversarial noise and proposing a noise clamping technique based on LPIPS minimizing perceptual distortion of the original
image. Photoguard [28] is noteworthy for introducing the concept of encoder attacks, and separately, it presents a diffusion
attack that utilizes the denoised generated image. Mist [18] combines the semantic loss proposed in [19] with the textual
loss from [28], leading to a novel loss function that enables the generation of transferable adversarial examples against
various diffusion-based attacks. Diff-Protect [37] proposes a novel approach that updates by minimizing loss, unlike previous
studies. DiffusionGuard [4] introduces adversarial noise early in the diffusion process, preventing image editing techniques
from reproducing sensitive areas. All previous research has been directed toward protecting images when they are utilized
directly in DMs, as depicted in Fig. 2(a) in the main paper.
Adversarial noise with frequency-domain. There are various approaches utilizing frequency in generating adversarial noise.
Maiya et al. [21] suggested that using frequency is effective in designing imperceptible noise while Wang et al. [34] argued
that high-frequency components are effective for attacking CNN-based models. On the other hand, recent studies [9, 31]
has demonstrated that it is possible to attack DNN-based models [22, 30] effectively using only low-frequency components.
Additionally, AdvDrop [7] showed that transformations in the frequency domain of images can induce misclassification. Ling
et al. [20] proposed the frequency data transformation(FDT) method to improve transferability between models in black-box
attacks.

C. Additional Experimental Details
C.1. Implementation Details
In this paper, we generate FaceShield by utilizing the mid-layer cross-attention of the open-source Stable Diffusion Model
v1.5 [25], the upper part of the CLIP Image Projector in the CLIP Model [24], only the P-Network from the PyTorch version
of MTCNN [41], and two variants of ArcFace [6]. All images are resized to 512 × 512 before processing, and experiments
are conducted on an RTX A6000. A more detailed description is provided in Table 1, where the same hyperparameters are
applied as in the baseline methods [18, 19, 28, 37] for generating noise.

Norm ϵ step size number of steps
ℓ∞ 12/255 1/255 30

Table 1. Hyperparameters used for the PGD attacks.

As a result, FaceShield achieves 24 seconds per image with only 15 GB of memory, demonstrating significantly lower re-
source costs compared to baseline methods, as shown in Table 2. This efficiency is achieved through three key optimizations:
(i) Restricting the input to the Conditioned Face Attack (CFA) module, ensuring the process focuses solely on facial regions.
(ii) Extracting gradients from the condition path (Fig.3 in the main paper), eliminating the need for gradient accumulation
across multiple timesteps. (iii) Updating only the mid-layer of the UNet, rather than optimizing the entire network. These
optimizations enable FaceShield to achieve high performance with minimal computational resources.
Gaussian Blur. To achieve more precise detection of intensity variations between adjacent pixels, we employ a 3× 3 Sobel
matrix. Its compact size ensures faster convolution operations and reduces memory consumption, which is crucial for iterative
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Baseline ISM↓ LPIPS↓ VRAM Sec.↓
AdvDM [19] 0.288 0.4214 20 GB 39

Mist [18] 0.291 0.5492 22 GB 80
PhotoGuard [28] 0.294 0.5515 28 GB 234

SDST [37] 0.303 0.5409 11 GB 34
Ours 0.168 0.2017 15 GB 24

Table 2. Comparison of resource costs with baseline methods.

computations. Subsequently, a 9× 9 padding is applied to the detected regions to generate thicker masks, ensuring smoother
transitions during the subsequent Gaussian blur step and mitigating abrupt changes.
Low-pass Filter. We utilize perturbations in the frequency domain by performing an 8×8 patch division followed by a Dis-
crete Cosine Transform (DCT). This design is inspired by the JPEG compression scheme, which operates on 8×8 blocks and
employs a Quantization Table to prioritize low-frequency components. Furthermore, the 8×8 patch division offers computa-
tional efficiency advantages compared to approaches without such division during the DCT process. Unlike JPEG compres-
sion, we skip the RGB-to-YCbCr color space transformation. This decision is based on two considerations: (i) perturbations
inherently contain both positive and negative values, which are incompatible with the typical range constraints of the YCbCr
domain, and (ii) experiments demonstrate that handling frequencies directly in the RGB domain is sufficient to achieve our
performance objectives without compromising effectiveness. The coefficients for our low-pass filter are selected from the
Luminance Quantization Table, focusing exclusively on values below 40, as illustrated in Fig.3.

JPEG Quantization Table FaceShield Low-Pass Filter

Figure 3. The table on the left shows the Luminance Quantization Table used in the JPEG compression process. The table on the right
illustrates the FaceShield’s Low-pass Filter, which is created by selecting only the values below 40.

C.2. Human Evaluation
We conduct a human evaluation study to assess the visibility of the noise and the protection performance across four deepfake
models [14, 33, 38, 42], along with four baseline methods [18, 19, 28, 37]. Specifically, participants are asked to score images
on a scale from 1 (low performance) to 7 (high performance) in response to the following two questions: (i) ”How much each
image is damaged compared to the original image?”, which measures the visibility of the protective noise pattern relative to
each baseline method, and (ii) ”How much each image differs from the source image?”, which evaluates how effectively each
method prevents the deepfake models from reflecting the original source face. We use 20 images (10 from the CelebA-HQ
dataset and 10 from the VGGFace2-HQ dataset) across four deepfake models, with 100 participants providing their ratings.
To enhance fairness, the positions of the compared methods within each question are randomly shuffled. An example survey
is shown in Fig.4.
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Figure 4. Human Evaluation Survey. Survey 1 (the first figure) evaluates the visibility of the noise, while Surveys 2-5 (the remaining
figures) assess the protection performance across different deepfake models [14, 33, 38, 42]. The scoring scale ranges from 1 to 7, and to
ensure fairness, the placement of comparison methods was randomly shuffled for each survey.
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D. Additional Ablation Study
D.1. MTCNN Resize Robustness
The experimental results for MTCNN, as discussed in the Ablation Study of the main paper, are presented through both
quantitative and qualitative evaluations. Specifically, Table 3 and Table 4 provide quantitative metrics, while Fig.5 illustrates
how the detected regions propagate to the subsequent network when face detection fails at the P-Network stage. These results
demonstrate the superiority of the newly proposed method in FaceShield compared to the BILINEAR approach introduced in
prior work [40], which aimed to perturb the MTCNN model. In particular, Table 3 evaluates various scaling modes provided
by OpenCV, while Table 4 focuses on those offered by Pillow. The experiments were conducted using both the PyTorch
and TensorFlow versions of the framework. For comprehensive evaluation, we utilized 3,000 images each from the CelebA-
HQ [12] and VGGFace2-HQ [3] datasets. The results confirm that FaceShield achieves superior coverage across diverse
scaling modes compared to previous approaches.

Dataset CelebA-HQ [12]
Method BILINEAR AREA NEAREST CUBIC LANC EXACT

BILINEAR 93.77% 0.07% 0.40% 95.73% 95.67% 93.77%
Ours 97.31% 94.17% 4.13% 97.10% 97.00% 97.30%

Dataset VGGFace2-HQ [3]
Method BILINEAR AREA NEAREST CUBIC LANC EXACT

BILINEAR 87.23% 0.17% 0.37% 94.63% 94.43% 88.93%
Ours 89.20% 72.93% 2.47% 94.93% 95.27% 89.33%

Table 3. The metric values represent the detection failure rates of the MTCNN [41] model. Our scaling method demonstrates greater
robustness across various scaling modes in the OpenCV Library compared to the existing approach, with particularly notable performance
in the model’s default setting, AREA.

Dataset CelebA-HQ [12]
Method BILINEAR BOX NEAREST BICUBIC LANCZ0S HAMMING

BILINEAR 0.70% 0.80% 79.73% 0.57% 0.84% 0.70%
Ours 10.67% 98.57% 97.90% 16.90% 16.30% 37.53%

Dataset VGGFace2-HQ [3]
Method BILINEAR BOX NEAREST BICUBIC LANCZ0S HAMMING

BILINEAR 1.37% 1.87% 68.83% 1.47% 1.60% 1.63%
Ours 12.83% 84.20% 87.97% 16.03% 15.53% 28.53%

Table 4. The metric values represent the detection failure rates of the MTCNN [41] model. Our scaling method demonstrates greater
robustness across various scaling modes in the Pillow Library compared to the existing approach.
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Figure 5. We compare the performance of the image resize method using only BILINEAR interpolation (top) and our proposed approach
(bottom). Experiments are conducted with the default MTCNN resizing mode, CV2.INTER AREA . The bounding boxes (red boxes) shown
represent the top three outputs from the P-Net with the highest confidence scores.
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D.2. Gaussian blur Effect
The qualitative results of the Gaussian blur effect, mentioned in the Ablation Study of the main paper, are presented in the
following Fig.6, comparing the cases with and without its application. As shown in the figure on the right, Sobel filtering is
applied to achieve effective invisibility while maintaining maximum performance, resulting in blurred areas where noticeable
differences between adjacent regions exist. Additional examples of the results are provided in Fig.7.

w/ Gaussian Blur (Ours)w/o Gaussian Blur

Perturbation noise

Figure 6. By detecting regions with large intensity differences between adjacent RGB pixels in the perturbation, a blur effect is applied,
enhancing the invisibility of the noise.
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Figure 7. Qualitative comparison between the case with Gaussian Blur (bottom) and without Gaussian Blur (top).
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E. Evaluating FaceShield under Image Purifications
We conduct additional experiments to demonstrate the robustness of FaceShield leveraging low-frequency components
against various image purification techniques. Specifically, we evaluate the performance under three primary scenarios.
• JPEG compression: Images are compressed at quality levels of 90, 75, and 50 to introduce distortions.
• Bit reduction: Images are quantized to 8-Bit and 3-Bit formats, simulating lossy storage conditions.
• Resizing: Images are resized to 75% and 50% of their original dimensions and then restored to their original size. Two

interpolation methods, BILINEAR and INTER AREA, are applied during resizing.
These experiments are conducted using the IP-Adapter model [38], with the same dataset as in Table 1 in the main paper.
The quantitative results for ISM and PSNR are presented in Fig.8, while the qualitative results are shown in Fig.9 and Fig.10.
As shown in the results, FaceShield causes only minor performance degradation across various purification methods, yet still
demonstrates superior performance compared to other baselines [18, 19, 28, 37], proving its remarkable robustness.
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Figure 8. Quantitative results of FaceShield-protected images after passing through various purification methods and evaluated on a deep-
fake model [38]. Our method demonstrates robustness against various purification methods, including JPEG compression, bit reduction,
and two types of resizing, with its performance compared to baseline methods [18, 19, 28, 37]. The results, measured using PSNR and
Identity Score Matching (ISM), show that our method closely resembles lossless (PNG) outcomes while consistently outperforming the
baselines. Both metrics indicate better performance with lower values.

F. Additional Qualitative Results
In this section, we present additional qualitative results of our methods. Specifically, Fig.11 to Fig.13 compare our approach
with baseline methods [18, 19, 28, 37] on various diffusion-based deepfake models [14, 33, 38, 42], using a pair of source
and target images. Fig.14 compares our method with the baselines on the FaceSwap via Diffusion model [33] across different
image pairs. Fig.15 shows the comparison within the IP-Adapter model [38], while Fig.16 compares our method with the
baselines on the DiffSwap model [42]. Fig.17 presents a comparison on the DiffFace model [14]. Finally, Fig.18 and Fig.19
showcase additional experiments on two GAN-based deepfake models: SimSwap [2] and InfoSwap [8], respectively.
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Unprotected

PNG JPEG Compression Bit Reduction

Protected Quality 90 Quality 75 Quality 50 8-Bit 3-Bit

Figure 9. The results of applying three levels of JPEG compression and two levels of bit reduction to images protected by FaceShield,
followed by evaluation on a deepfake model [38], show that the performance degradation is minimal compared to lossless storage (PNG).

Unprotected

PNG Resizing (BILINEAR)

Protected 75 % 50 %

Resizing (INTER AREA)

75 % 50 %

Figure 10. The results of applying two types of resizing methods, with 75% and 50% scaling, to images protected by FaceShield, followed
by evaluation on a deepfake model [38], show that the performance degradation is minimal compared to lossless storage (PNG).
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Figure 11. Qualitative comparisons with AdvDM [19], Mist [18], PhotoGuard [28], and SDST [37] across four diffusion-based deepfake
models: FaceSwap [33], IP-Adapter [38], DiffSwap [42], and DiffFace [14].
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Figure 12. Qualitative comparisons with AdvDM [19], Mist [18], PhotoGuard [28], and SDST [37] across four diffusion-based deepfake
models: FaceSwap [33], IP-Adapter [38], DiffSwap [42], and DiffFace [14].
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Figure 13. Qualitative comparisons with AdvDM [19], Mist [18], PhotoGuard [28], and SDST [37] across four diffusion-based deepfake
models: FaceSwap [33], IP-Adapter [38], DiffSwap [42], and DiffFace [14].
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Figure 14. Qualitative comparisons for FaceSwap [33].
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Figure 15. Qualitative comparisons for IP-Adapter [38].
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Figure 16. Qualitative comparisons for DiffSwap [42].
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Figure 17. Qualitative comparisons for DiffFace [14].
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Figure 18. Qualitative results for SimSwap [2].
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Figure 19. Qualitative results for InfoSwap [8].
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G. Additional Experiments

Transferability experiments on variants of IP-Adapter

IP-Adapter

IP-Adapter

SD v1.5

SD v1.5 light

SD v1.5 vit-G

IP-AdapterXL
SD v1.5

SD v1.5 vit-H

IP-AdapterPlus
SD v1.5

Face SD v1.5

IP-AdapterPlusXL
SDXL vit-H

Face SDXL vit-H

IP-AdapterFaceID
SD v1.5

Portrait SD v1.5

IP-AdapterFaceIDXL
SDXL vit-H

Portrait SDXL vit-H

IP-AdapterFaceIDPlus
SD v1.5 

Plusv2 SD v1.5

IP-AdapterFaceIDPlusXL Plusv2 SDXL

IP-AdapterFull Full face SD v1.5

Figure 20. IP-Adapter model family tree. This diagram shows the hierarchical structure of the IP-Adapter variants.

IP-Adapter [38] is a lightweight adapter that enables image conditions in pre-trained text-to-image diffusion models [25].
Previous approaches [15, 27] that utilized image conditions primarily relied on fine-tuning text-conditioned diffusion models.
However, these methods often demanded significant computational resources and resulted in models that were challenging
to reuse. To address these limitations, the IP-Adapter, which proposes a decoupled cross-attention mechanism, has drawn
considerable attention for its practical applicability. It is commonly used in inpainting methods with image conditions. As
shown in Fig.20, multiple versions of the IP-Adapter model have been developed with Stable diffusion v1.5 [25].

A more detailed look at the various models reveals that the original model [38] uses the CLIP image encoder [24] to extract
features from the input image. In contrast, the IP-AdapterXL improves on this by utilizing larger image encoders, such as
ViT-BigG or ViT-H, which enhance both capacity and performance. On the other hand, the IP-AdapterPlus and XL versions
modify the architecture by adopting a patch embedding method inspired by Flamingo’s perceiver resampler [1], allowing
for more efficient image encoding. Similarly, the IP-AdapterFaceID and XL versions replace the CLIP image encoder with
InsightFace, extracting FaceID embeddings from reference images. This enables the combination of additional text-based
conditions with the facial features of the input image, allowing for the generation of diverse styles. The IP-AdapterFaceIDPlus
and XL versions further enhance the image encoding pipeline by incorporating multiple components. InsightFace is used for
detailed facial features, the CLIP image encoder captures global facial characteristics, and the Perceiver-resampler effectively
combines these features to improve the model’s overall functionality.
Qualitative results. We evaluate the transferability across different IP-Adapter versions and present comparisons with base-
line methods. Specifically, we conducted experiments on eight of these models, with results and model descriptions provided
in Fig.21 to Fig.24. These results demonstrate the versatility of FaceShield, showing that it is applicable across various
sub-models of the IP-Adapter [38].
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Figure 21. Qualitative comparison with baselines on the SD 1.5-based IP-Adapter ControlNet version (top) and SDXL-based IP-Adapter
ControlNet version (bottom).
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Figure 22. Qualitative comparison with baselines on the SD 1.5-based IP-Adapter ImageVariation version (top) and SDXL-based IP-
Adapter ImageVariation version (bottom).
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Prompt : photo of a beautiful girl wearing casual shirt in a garden
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Prompt : photo of a beautiful girl wearing casual shirt in a garden

Figure 23. Qualitative comparison with baselines on the SD 1.5-based IP-Adapter Multi-modal prompts version (top) and SDXL-based
IP-Adapter Multi-modal prompts version (bottom).
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Prompts : best quality, high quality, wearing a hat on the beach
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Figure 24. Qualitative comparison with baselines on the SD 1.5-based IP-Adapter Plus version (top) and the SDXL-based IP-Adapter Plus
Face version (bottom).
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