Reangle-A-Video: 4D Video Generation as Video-to-Video Translation

Supplementary Material

This supplementary material is structured as follows: In
Sec. A, we provide additional experimental details. Sec.
B presents additional experiment results. Following this,
we discuss the limitations and failure cases of Reangle-A-
Video in Sec. C.

A. Additional Experimental Details

A.1l. Camera Visualizations

We demonstrate six degrees of freedom in both (a) Static
view transport and (b) Dynamic camera control. Fig. 10 vi-
sualizes the transported viewpoints and camera movements
used in our work: orbit left, orbit right, orbit up, orbit down,
dolly zoom in, and dolly zoom out.

(a) Static view transport

(b) Dynamic camera control

Orbit up

Orbit right
viewpoint

Orbit up
movement

Orbit right
movement

Orbit left Z
viewpoint oom out

movement

6 2
’Znnm out

viewpoint

Orbit down
viewpoint

Figure 10. Visualizations of the used camera types.

A.2. Warped Video Dataset Composition

For (a) static view transport setup, we set M as 12, gen-
erating warped videos from 12 different viewpoints: two
random-angle orbit left, two random-angle orbit right, two
random-angle orbit up, two random-angle orbit down, two
random-range dolly zoom in, and two random-range dolly
zoom out. Including the original input video, the training
set consists of 13 videos.

For (b) dynamic camera control training, we set M as
6, rendering warped videos with six different camera move-
ments: one random-angle orbit left, one random-angle orbit
right, one random-angle orbit up, one random-angle orbit
down, one random-range dolly zoom in, and one random-
range dolly zoom out. Including the original input video,
this also results in a training set of 7 videos.

A.3. Finetuning Cost

We originally trained and inferred at a high resolution
(49x480x720) on a 40GB GPU using gradient checkpoint-
ing to fit within memory—this significantly slows down

Mask frame 1 Mask frame 2 Mask frame 3 Mask frame 4 Mask frame 5

Spatially
downsampled
visibility masks

Spatially
&temporally
downsampled
visibility masks

Invisible
pixel

[H
Figure 11. Temporal downsampling of visibility masks. Except
for the first mask frame, pixel-wise (element-wise) logical AND
operation is done for every four masks.

backpropagation. However, on an 80GB GPU without gra-
dient checkpointing, the process is 3.3x faster, complet-
ing in about 18 minutes. Alternatively, on a 40GB GPU
with checkpointing but with reduced temporal resolution
(25 frames), it’s 2.3 x faster (26 minutes).

A.4. 3D Downsampling Visiblity Masks

Recent video diffusion models rely on 3D VAEs that per-
form both spatial and temporal compression to alleviate the
computational burden of modeling long video sequences.
However, such compression complicates the direct mapping
of RGB pixel-space visibility masks to their corresponding
latent regions. In our work, we adopt the 3D VAE architec-
ture of CogVideoX, which features a spatio-temporal com-
pression rate given by H X W x N = 8h x 8w X (1 + 4n),
where (H,W, N) denote the pixel-space resolutions, and
(h,w,n) represent the corresponding resolutions in the la-
tent space. Given a visibility mask in pixel-space, M €
RIXWXN "we first downsample the spatial dimensions by
a factor of 8 using nearest-neighbor interpolation. For tem-
poral downsampling, we retain the first frame intact and
then compress every subsequent group of four frames via
an element-wise logical AND operation (see Fig. 11 for the
illustration). This procedure ensures that a latent region is
marked as visible only if it is visible across all frames within
each group.

A.S. Pre-trained Model Checkpoints

Reangle-A-Video builds upon publicly available pre-trained
image and video generative models. Reangle-A-Video
builds on publicly available pre-trained image and video
generative models. Here, we specify the versions used:

» Text-to-Image generation model: Flux.1-dev *

* Image-to-Image inpainting model: Flux-ControlNet-
Inpainting-Beta °

* Image-to-Video generation model: CogVideoX-12V-5b ©

Algorithm 1 Multi-View Consistent Image Inpainting (dif-
fusion model)

Require: Inpainted images {&1,..., &}, the image to be
inpainted &1, and the image inpainting diffusion model
(6,€.D).

e E(@r41)
zr ~ N(O, I)
fort =T to1do
for s =1to .S do
e~ N(0,1)
z{_, + DDPM.step(z¢, ¢, ¢, t, €)

21 & v (i — VI = @iee(zi, e t))

end for
for s = 1to S do
for j = 1to I do
rs,j < eval 3d_consistency(D(zg,_,), ;)
end for
Ty 4 %(7“371 +rso+--+7Ts50)
end for
§* <— argmax, 7
Zi 1 25,
end for
Z141 + D(20)
return

A.6. Multi-view Consistent Images Completion

We present the detailed algorithm for our proposed multi-
view consistent image completion. As described in the
main text, our approach sequentially performs multi-view
inpainting using Algorithm 1 or 2, based on previously
completed images. We introduce two versions: a diffusion
model-based method (Algorithm 1) and a flow model-based
method (Algorithm 2).

To generate multiple sample versions at each denois-
ing step for the stochastic control guidance [42, 66, 88],
the diffusion model-based approach employs DDPM [33]
sampling, while the flow model-based approach solves an
SDE [54] that shares the same marginal distribution as its
corresponding ODE. Specifically, for the Wiener process

“https://huggingface.co/black-forest-labs/FLUX.
l1-dev

Shttps://huggingface.co/alimama-creative/FLUX.
l-dev-Controlnet-Inpainting-Beta

Shttps://huggingface.co/THUDM/CogVideoX~-5b-12V

Wt:

dZt = 'Ut(Zt)dt — Z0|t(1 — t)dt + 2(1 — t)Qth,
where ZO\t = Zt — t’Ut(Zt). (7)

The SDE is solved using the Euler—Maruyama method.

Algorithm 2 Multi-View Consistent Image Inpainting

(flow-based model)

Require: Inpainted images {&1,..., &}, the image to be
inpainted #7.;, and the image inpainting flow-based
model (¢, &, D).
¢ E(&ry1)

ztl NN(07I)
fori =0to7T —1do
At%ti_‘_l*ti

Zojt; < 21, — tivy(2t;, ¢, 1)
for s=1to S do
€~ N(0,1)
szl — 2y, +0p(24,, 0, t) AL
7Z0‘ti (lftl')AIFF\/ 2(1 — ti)2At6
2, o T (1 =t)0e(zf,,, c tit1)
end for
for s=1to S do
for j =1to I do
Tsj eval,3d,c0nsistency(D(zgIt“rl), &)
end for
Ts < %(Ts,l + Ts,2 +-- 4+ 713,[)
end for
§* <— argmaxg rg
Ztip ZfH»l
end for
Zri1 < D(2ziy)
return

After obtaining denoised estimates (Zy, for the diffu-
sion model, Z;; for the flow model), they are decoded and
compared against previously completed images using the
method from [1] to ensure multi-view consistency. The best
sample is selected for the next step. Specifically, for the
initial view completion, the first two views are inpainted si-
multaneously by extending the given algorithm, which eval-
uates consistency across all possible sample pairs and se-
lects the best pair for the next step.

B. Additional Experimental Results
B.1. Using Warped Videos for Fine-tuning

Due to the absence of an automatic metric for multi-view
motion fidelity, we conduct a human evaluation to assess the
necessity of using warped videos during fine-tuning (Sec.
3.3). Participants were shown two randomly selected videos
and asked, “Does the generated video accurately preserve

the input video’s motion?” before choosing the superior
video. The results are shown in Tab. 3.

Table 3. Quantitative ablation on warped videos during fine-
tuning. Multi-view motion fidelity is evaluated via human studies.

w/ warped videos w/o warped videos
80.44 % 19.56%

Multi-view motion fidelity

Generated video
with
standard diffusion loss

Generated video
with
masked diffusion loss |

Generated video
with
standard diffusion loss

Generated video
with
masked diffusion loss

Generated video
with
standard diffusion loss

Generated video
with
masked diffusion loss

Figure 12. Impact of masked diffusion loss on video quality.
Masking the diffusion loss effectively prevents artifacts.

B.2. Masking Diffusion Loss

Building on the flexible compositionality of diffusion objec-
tives, masked diffusion loss has been applied to diffusion-
based customizations [2, 92], video interpolation [17], and
efficient image diffusion model training [25, 96]. In our
work, we employ masked diffusion loss on a pre-trained
video diffusion transformer architecture to distill the 4D
motion prior of an arbitrary scene. As shown in Fig. 12,
this objective effectively prevents artifacts and eliminates
warped (black) regions in the generated videos.

Input frame Estimated depth map Warped Frame

Figure 13. Geometric misalignment in the warped frame. In
this example, the target camera view is shifted 10 degrees to the
(horizontal orbit) right of the input frame.

Input frame Estimated depth map

Inpainted frame

Figure 14. Pixel-scale artifacts in the warped frame. In this
example, the target camera view is shifted 10 degrees to the (hori-
zontal orbit) left of the input frame.

Input video

Figure 15. Failure cases of Reangle-A-Video.

C. Limitations and Failure Cases

Our method relies on point-based warping using estimated
depth maps, making it inherently vulnerable to errors from
inaccurate depth estimation and incorrect camera intrinsics.
These inaccuracies can distort the warping process, lead-
ing to geometric misalignment and depth inconsistencies.
For instance, Fig. 13 illustrates an example of geometric
misalignment in the warped frame. Moreover, as shown
in Fig. 14, warping errors can introduce pixel-level arti-
facts that may not be fully masked by visibility estimations,
allowing these small distortions to persist in the inpainted

results. Addressing these limitations would require more
accurate depth estimation and better handling of occlusion
constraints. In Fig. 15, we present failure cases. For in-
stance, our method produces inaccurate reconstructions in
videos with small regions (e.g., a blue sign in the back-
ground) or fast, complex motion (e.g., a man breakdanc-
ing). We attribute these issues partly to the fact that video
fine-tuning and inference are performed in a spatially and
temporally compressed latent space.

